Skip to main content

Brace Touch: A Dependable, Turbulence-Tolerant, Multi-touch Interaction Technique for Interactive Cockpits

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security (SAFECOMP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11698))

Included in the following conference series:

Abstract

A cockpit (also called a flight deck) is an interactive environment of an aircraft that enables both pilot and first officer to monitor and control the aircraft systems. Allowing the crew to control aircraft systems through display units by using a keyboard and cursor control unit is one of the main features in the new generation of cockpits based on the ARINC 661 standard. Aircraft manufacturers are now investigating the deployment of touch interactions in future cockpits and ARINC 661 standard (supplement 7) extends it for that purpose. While touch interactions have demonstrated benefits in terms of performance (from the user point of view), their dependability is an important issue that has not been addressed so far. This paper proposes an interaction technique for touch devices called Brace Touch that aims at increasing the dependability of touch interactions by providing solutions to address development, natural and operation faults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albinsson, P.A., Zhai, S.: High precision touch screen interaction. In: Proceedings of ACM CHI Conference, pp. 105–112 (2003)

    Google Scholar 

  2. Accot, J., Chatty, S., Maury, S., Palanque, P.: Formal transducers: models of devices and building bricks for the design of highly interactive systems. In: Harrison, M.D., Torres, J.C. (eds) Design, Specification and Verification of Interactive Systems 1997. Eurographics, pp. 143–159. Springer, Vienna (1997). https://doi.org/10.1007/978-3-7091-6878-3_10

    Google Scholar 

  3. ARINC 661 Cockpit Display System Interfaces to User Systems. ARINC Specification 661. Airlines Electronic Engineering Committee (AEEC) (2002)

    Google Scholar 

  4. ARINC 661. Cockpit display system interfaces to user systems. ARINC Specification 661, supplement 7 (April 2019). Airlines Electronic Engineering Committee (AEEC) (2019)

    Google Scholar 

  5. Au, O.K.C., Tai, C.L.: Multitouch finger registration and its applications. In: ACM CHI Conference, pp. 41–48 (2010)

    Google Scholar 

  6. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33 (2004)

    Article  Google Scholar 

  7. Bailly, G., Lecolinet, E., Guiard, Y.: Finger-count & radial-stroke shortcuts: 2 techniques for augmenting linear menus on multi-touch surfaces. In: ACM CHI Conference, pp. 591–594 (2010)

    Google Scholar 

  8. Barbé, J., Chatrenet, N., et al.: Physical ergonomics approach for touch screen interaction in an aircraft cockpit. In: Conference on Interaction Homme-Machine (IHM), pp. 9–16. ACM DL (2012)

    Google Scholar 

  9. Barboni, E., Conversy, S., Navarre, D., Palanque, P.: Model-based engineering of widgets, user applications and servers compliant with ARINC 661 specification. In: Doherty, G., Blandford, A. (eds.) DSV-IS 2006. LNCS, vol. 4323, pp. 25–38. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69554-7_3

    Chapter  Google Scholar 

  10. Bass, L., et al.: The arch model: Seeheim revisited. In: User Interface Developers’ Workshop, April 1991

    Google Scholar 

  11. Cockburn, A., et al.: Turbulent touch: Touchscreen input for cockpit flight displays. In: Proceedings of ACM CHI Conference, pp. 6742–6753 (2017)

    Google Scholar 

  12. Cockburn, A., et al.: Design and evaluation of brace touch for touchscreen input stabilisation. Int. J. Hum.-Comput. Stud. 122(21–37), 7 (2019)

    Google Scholar 

  13. DO-178C/ED-12C, Software Considerations in Airborne Systems and Equipment Certification, published by RTCA and EUROCAE (2012)

    Google Scholar 

  14. Dodd, S., Lancaster, J., Miranda, A., Grothe, S., DeMers, B., Rogers, B.: Touch screens on the flight deck: the impact of touch target size, spacing, touch technology and turbulence on pilot performance. In: Proceedings of the HFES Annual Meeting, vol. 58, no. 1, pp. 6–10 (2014)

    Article  Google Scholar 

  15. Ewerling, P., Kulik, A., Froehlich, B.: Finger and hand detection for multi-touch interfaces based on maximally stable extremal regions. In: ACM TEI Conference, pp. 173–182 (2012)

    Google Scholar 

  16. Fayollas, C., Palanque, P., Fabre, J-C., Martinie, C., Déléris, Y.: Dealing with faults during operations: beyond classical use of formal methods. In: [19], pp. 549–575 (2017)

    Google Scholar 

  17. Fayollas, C., Martinie, C., Palanque, P., Deleris, Y., Fabre, J.-C., Navarre, D.: An approach for assessing the impact of dependability on usability: application to interactive cockpits. In: IEEE European Dependable Computing Conference (EDCC), pp. 198–209 (2014)

    Google Scholar 

  18. Fayollas, C., Martinie, C., Palanque, P., Barboni, E., Fahssi, R., Hamon, A.: Exploiting action theory as a framework for analysis and design of formal methods approaches: application to the CIRCUS integrated development environment. In: [19], pp. 465–504

    Google Scholar 

  19. Weyers, B., Bowen, J., Dix, A., Palanque, P. (eds.): The Handbook of Formal Methods in Human-Computer Interaction. HIS. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51838-1

    Book  Google Scholar 

  20. Genrich, H.J.: Predicate/transitions nets. In: Jensen, K., Rozenberg, G. (eds) High-Levels Petri Nets: Theory and Application. Springer, Heidelberg, pp. 3–43 (1991). https://doi.org/10.1007/978-3-642-84524-6_1

    Chapter  Google Scholar 

  21. Hamon-Keromen, A., Palanque, P., Deleris, Y., Navarre, D., Barboni, E.: A tool-supported development process for bringing touch interactions into interactive cockpits for controlling embedded critical systems. In: HCI in Aeronautics (HCI’Aero), pp. 25–36. ACM DL (2012)

    Google Scholar 

  22. Hamon-Keromen, A., Palanque, P., Silva, J.-L., Deleris, Y., Barboni, E.: Formal description of multi-touch interactions. In: ACM Engineering Interactive Computing Systems, pp. 207–216 (2013)

    Google Scholar 

  23. Harrison, C., Schwarz, J., Hudson, S.E.: TapSense: enhancing finger interaction on touch surfaces. In: Proceedings on ACM UIST Conference, pp. 627–636. ACM (2011)

    Google Scholar 

  24. Hutchins, E., Lauwsen, T.: Distributed cognition in an airline cockpit. In: Engeström, Y., Middleton, D. (Eds) Cognition and Communication at work. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  25. ISO 9241-9:2010 Usability - Part 9: Requirements for non-keyboard input devices (2010)

    Google Scholar 

  26. Karat, J., McDonald, J., Anderson, M.: A comparison of selection techniques: touch panel, mouse, keyboard. Int. J. Man-Mach. Stud. 1, 73–92 (1986)

    Article  Google Scholar 

  27. Kin, K., Hartmann, B., Agrawala, M.: Two-handed marking menus for multitouch devices. ACM Trans. Comput.-Hum. Interact. (TOCHI) 18(3), 16 (2011)

    Article  Google Scholar 

  28. Marquardt, N., Kiemer, J., Ledo, D., Boring, S., Greenberg, S.: Designing user-, hand-, and handpart-aware tabletop interactions with the TouchID toolkit. In: Proceedings of ACM TEI, pp. 21–30 (2011)

    Google Scholar 

  29. Memon, A.M.: An event-flow model of GUI-based applications for testing. Softw. Test. Verif. Reliab. 17, 137–157 (2007)

    Article  Google Scholar 

  30. Navarre, D., Palanque, P., Basnyat, S.: A formal approach for user interaction reconfiguration of safety critical interactive systems. In: Harrison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 373–386. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87698-4_31

    Chapter  Google Scholar 

  31. Navarre, D., Palanque, P., Ladry, J.F., Barboni, E.: ICOs: a model-based user interface description technique dedicated to interactive systems addressing usability, reliability and scalability. ACM Trans. Comput.-Hum. Interact. 16(4), 18 (2009)

    Article  Google Scholar 

  32. Olwal, A., Feiner, S.: Rubbing the fisheye: precise touch-screen interaction with gestures and fisheye views. In: Conference Supplement of UIST 2003, pp. 83–84 (2003)

    Google Scholar 

  33. Palanque, P., Barboni, E., Martinie, C., Navarre, D., Winckler, M.: A model-based approach for supporting engineering usability evaluation of interaction techniques. In: Conference on ACM Engineering Interactive Computing Systems (EICS 2011), pp. 21–30 (2011)

    Google Scholar 

  34. Potter, R.L., Weldon, L.J., Shneiderman, B.: Improving the accuracy of touchscreens: an experimental evaluation of three strategies. In: Proceedings of CHI 1988, pp. 27–32 (1988)

    Google Scholar 

  35. Reason, J.: Human Error. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  36. Shneiderman, B.: Touchscreens now offer compelling uses. In: Sparks of Innovation in Human-Computer Interaction. Ablex, Norwood (1993)

    Google Scholar 

  37. Sugiura, A., Koseki, Y.: A user interface using fingerprint recognition: holding commands and data objects on fingers. In: Proceedings of ACM UIST Conference, pp. 71–79 (1998)

    Google Scholar 

  38. Stanton, N., et al.: Predicting design induced pilot error using HET (Human Error Template) – a new formal human error identification method for flight decks. J. Aeronaut. Sci. 110, 107–115 (2006)

    Article  Google Scholar 

  39. Tankeu-Choitat, A., Navarre, D., Palanque, P., Deleris, Y., Fabre, J.-C., Fayollas, C.: Self-checking components for dependable interactive cockpits using formal description techniques. In: IEEE Pacific Rim Dependable Computing Conference, pp. 164–173 (2011)

    Google Scholar 

  40. Walker, G.: A review of technologies for sensing contact location on the surface of a display. J. Soc. Inf. Disp. 20(8), 413–440 (2012)

    Article  Google Scholar 

  41. Wang, F., Cao, X., Ren, X., Irani, P.: Detecting and leveraging finger orientation for interaction with direct-touch surfaces. In: Proceedings of ACM UIST Conference, pp. 23–32 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Palanque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Palanque, P., Cockburn, A., Désert-Legendre, L., Gutwin, C., Deleris, Y. (2019). Brace Touch: A Dependable, Turbulence-Tolerant, Multi-touch Interaction Technique for Interactive Cockpits. In: Romanovsky, A., Troubitsyna, E., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2019. Lecture Notes in Computer Science(), vol 11698. Springer, Cham. https://doi.org/10.1007/978-3-030-26601-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26601-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26600-4

  • Online ISBN: 978-3-030-26601-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics