Advertisement

From Cognitive Structures to Positive and Negative Learning in a Dialogue Semantics Perspective

  • Andy LückingEmail author
Chapter
  • 30 Downloads

Abstract

Part of language processing and understanding is building semantic structures or situation models. In this paper it is argued on the basis of previous works how dialogue semantics provides representations for formations of such cognitive structures. This cognitive twist is extended to a brief exposition of a dialogical model of learning which is then shown to automatically embrace a fourfold distinction into learning from the positive and learning from the negative, positive learning and negative learning, with the latter being two prime areas of interest of PLATO. As a result, this chapter contributes to a semantic derivation and clarification of different forms of learning on a propositional level. The chapter concludes with a brief outlook on language-relative issues pertinent to multilingual (learning) settings.

Keywords

Semantic structures Cognitive structures Situation theory Language processing Dialogue semantics Dialogical learning rule Learning from the positive Learning from the negative Positive learning Negative learning 

References

  1. Austin, J. L. (1950). Truth. In Proceedings of the Aristotelian Society. Supplementary. Vol. xxiv. (Reprinted in Austin, J. L. (1970). Philosophical papers (2nd ed., pp. 111–128). Oxford: Clarendon Press.Google Scholar
  2. Barwise, J., & Cooper, R. (1981). Generalized quantifiers and natural language. Linguistics and Philosophy, 4(2), 159–219.  https://doi.org/10.1007/BF00350139 CrossRefGoogle Scholar
  3. Barwise, J., & Perry, J. (1983). Situations and attitudes (The David Hume Series of philosophy and cognitive science reissues). Stanford: CSLI Publications.Google Scholar
  4. Barwise, J., & Seligman, J. (1997). Information flow: The logic of distributed systems (Cambridge tracts in theoretical computer science) (Vol. 44). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  5. Beckermann, A. (1999). Analytische Einführung in die Philosophie des Geistes. Berlin: de Gruyter.Google Scholar
  6. Bisang, W. (2015). Hidden complexity – The neglected side of complexity and its implications. Linguistics Vanguard, 1(1), 177–187.  https://doi.org/10.1515/lingvan-2014-1014 CrossRefGoogle Scholar
  7. Chierchia, G., & McConnell-Ginet, S. (2000). Meaning and grammar – An introduction to semantics (2nd ed.). Cambridge: MIT Press.Google Scholar
  8. Clark, H. H. (1996). Communities, commonalities, and communication. In J. J. Gumperz & S. C. Levinson (Eds.), Rethinking linguistic relativity (pp. 324–355). Cambridge: Cambridge University Press.Google Scholar
  9. Cooper, R. (2012). Type theory and semantics in flux. In R. Kempson, T. Fernando, & N. Asher (Eds.), Philosophy of linguistics (Handbook of philosophy of science) (Vol. 14, pp. 271–323). Oxford: Elsevier.CrossRefGoogle Scholar
  10. Cooper, R., & Ginzburg, J. (2011). Negation in dialogue. In: Proceedings of the 15th Workshop on the Semantics and Pragmatics of Dialogue (pp. 130–139). SemDial 2011, Los Angeles.Google Scholar
  11. Cooper, R., & Ginzburg, J. (2015). Type theory with records for natural language semantics. In S. Lappin & C. Fox (Eds.), The handbook of contemporary semantic theory (2nd ed., pp. 375–407). Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
  12. Copestake, A., Flickinger, D., Pollard, C., & Sag, I. A. (2005). Minimal recursion semantics: An introduction. Research on Language and Computation, 3(2-3), 281–332.CrossRefGoogle Scholar
  13. Demberg, V., Keller, F., & Koller, A. (2013). Incremental, predictive parsing with psycholinguistically motivated tree-adjoining grammar. Computational Linguistics, 39(4), 1025–1066.CrossRefGoogle Scholar
  14. Dingemanse, M., Blasi, D. E., Lupyan, G., Christiansen, M. H., & Monaghan, P. (2015). Arbitrariness, iconicity and systematicity in language. Trends in Cognitive Sciences, 19(10), 603–615.  https://doi.org/10.1016/j.tics.2015.07.013 CrossRefGoogle Scholar
  15. Dwivedi, V. D. (2013). Interpreting quantifier scope ambiguity: Evidence of heuristic first, algorithmic second processing. PLoS One, 8(11), e81461.  https://doi.org/10.1371/journal.pone.0081461 CrossRefGoogle Scholar
  16. Ferreira, F. (2005). Psycholinguistics, formal grammars, and cognitive science. The Linguistic Review, 22(2-4), 365–380.  https://doi.org/10.1515/tlir.2005.22.2-4.365 CrossRefGoogle Scholar
  17. Ginzburg, J. (2012). The interactive stance: Meaning for conversation. Oxford: Oxford University Press.CrossRefGoogle Scholar
  18. Gleitman, L. R., January, D., Nappa, R., & Trueswell, J. C. (2007). On the give and take between event apprehension and utterance formulation. Journal of Memory and Language, 57(4), 544–569.  https://doi.org/10.1016/j.jml.2007.01.007 CrossRefGoogle Scholar
  19. Jacobson, P. (2000). Paycheck pronouns, Bach-Peters sentences, and variable-free semantics. Natural Language Semantics, 8(2), 77–155.CrossRefGoogle Scholar
  20. Johnson-Laird, P. N. (1989). Mental models. In M. I. Posner (Ed.), Foundations of cognitive science (pp. 469–499). Cambridge: MIT Press.Google Scholar
  21. Kamp, H. (1979). Events, instants and temporal reference. In R. Bäuerle, U. Egli, & A. von Stechow (Eds.), Semantics from different points of view (Springer series in language and communication) (Vol. 6, pp. 376–417). Berlin: Springer.CrossRefGoogle Scholar
  22. Kasper, S. (2013). The culture and nature of the linking competence. How action and perception shape the syntax-semantics relationship. PhD thesis, Philipps-Universität Marburg.Google Scholar
  23. Kratzer, A. (1989). An investigation of the lumps of thought. Linguistics and Philosophy, 12(5), 607–653.CrossRefGoogle Scholar
  24. Kutas, M., DeLong, K. A., & Smith, N. J. (2011). A look around at what lies ahead: Prediction and predictability in language processing. In M. Bar (Ed.), Predictions in the brain: Using our past to generate a future (pp. 190–207). Oxford: Oxford University Press.CrossRefGoogle Scholar
  25. Lücking, A., & Ginzburg, J. (2018). ‘Most people but not Bill’: Integrating sets, individuals and negation into a cognitively plausible account of noun phrase interpretation. In Proceedings of Cognitive Structures: Linguistic, Philosophical and Psychological Perspectives. CoSt’18.Google Scholar
  26. Millikan, R. G. (1984). Language, thought and other biological categories. Cambridge: MIT Press.Google Scholar
  27. Oser, F., & Spychiger, M. (2005). Lernen ist schmerzhaft: Zur Theorie des Negativen Wissens und zur Praxis der Fehlerkultur. Weinheim: Beltz.Google Scholar
  28. Poesio, M., & Rieser, H. (2010). Completions, coordination, and alignment in dialogue. Dialogue and Discourse, 1(1), 1–89.  https://doi.org/10.5087/dad.2010.001 CrossRefGoogle Scholar
  29. Rieser, H., & Schlangen, D. (2011). Introduction to the special issue on incremental processing in dialogue. Dialogue and Discourse, 2(1), 1–10.  https://doi.org/10.5087/dad.2010.001 CrossRefGoogle Scholar
  30. Schlesewsky, M., & Bornkessel, I. (2004). On incremental interpretation: Degrees of meaning accessed during sentence comprehension. Lingua, 114(9), 1213–1234.  https://doi.org/10.1016/j.lingua.2003.07.006 CrossRefGoogle Scholar
  31. Urbach, T. P., & Kutas, M. (2010). Quantifiers more or less quantify online: ERP evidence for partial incremental interpretation. Journal of Memory and Language, 63(2), 158–179.CrossRefGoogle Scholar
  32. Yoo, D.-G. (2007). Syntax und Kontext: Satzverarbeitung in kopffinalen Sprachen. PhD thesis, Universität Bielefeld.Google Scholar
  33. Zeevat, H. (2018). Interpreting dependent NPs. In Proceedings of Cognitive Structures: Linguistic, Philosophical and Psychological Perspectives. CoSt’18.Google Scholar
  34. Zlatkin-Troitschanskaia, O., Schmidt, S., Molerov, D., Shavelson, R., & Berliner, D. (2018). Conceptual fundamentals for a theoretical and empirical framework of positive learning. In O. Zlatkin-Troitschanskaia, G. Wittum, & A. Dengel (Eds.), Positive learning in the age of information – A blessing or a curse? (pp. 29–50). Wiesbaden: Springer VS.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Computer Science and MathematicsGoethe University Frankfurt am MainFrankfurt am MainGermany
  2. 2.Université Paris Diderot (Paris 7)Laboratoire de Linguistique Formelle (LLF)Frankfurt am MainGermany

Personalised recommendations