An Example of Holomorphically Induced Representations of Exponential Solvable Lie Groups

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 290)


We discuss a holomorphically induced representation \(\rho =\rho (f,\mathfrak h)\) of Boidol’s group (split oscillator group) G from a real linear form f of the Lie algebra \(\mathfrak g\) of G and a one-dimensional complex subalgebra \(\mathfrak h\) of \(\mathfrak g_\mathbb C\) given by (2.2) in Sect. 2.\(\rho \) is a subrepresentation of the regular representation of G with the Plancherel measure \(\nu \). For \(\nu \)-almost all irreducible representations \(\pi \) of G, the spaces of generalized vectors satisfying the semi-invariance associated with f and \(\mathfrak h\) are one-dimensional subspaces. On the other hand, according to the choice of f, there are two cases that (1) \(\rho \) vanishes, and (2) \(\rho \) is non-zero.


Holomorphically induced representation Solvable Lie group Plancherel formula 


  1. 1.
    Benoist, Y.: Multiplicité un pour les espaces symétriques exponentiels. Mém. Soc. Math. France (N.S.) (15), 1–37 (1984)CrossRefGoogle Scholar
  2. 2.
    Bernat, P., Conze, N., Duflo, M., Lévy-Nahas, M., Rais, M., Renouard, P., Vergne, M.: Représentations des groupes de Lie résolubles. Monographies de la Société Mathématique de France, no. 4. Dunod, Paris (1972)Google Scholar
  3. 3.
    Fujiwara, H.: Représentations monomiales des groupes de Lie résolubles exponentiels. The Orbit Method in Representation Theory, pp. 61–84. Birkhäuser, Basel (1990)CrossRefGoogle Scholar
  4. 4.
    Fujiwara, H.: Une réciprocité de Frobenius. Infinite Dimensional Harmonic Analysis III, pp. 17–35. World Scientific Publishing, Hackensack, NJ (2005)CrossRefGoogle Scholar
  5. 5.
    Fujiwara, H., Ludwig, J.: Harmonic Analysis on Exponential Solvable Lie Groups. Monographs in Mathematics. Springer, Tokyo (2015)CrossRefGoogle Scholar
  6. 6.
    Fujiwara, H., Yamagami, S.: Certaines représentations monomiales d’un groupe de Lie résoluble exponentiel. Representations of Lie groups, Kyoto, Hiroshima, 1986. Advanced Studies in Pure Mathematics, vol. 14, pp. 153–190. Academic Press, Boston, MA (2014)Google Scholar
  7. 7.
    Inoue, J.: Semi-invariant vectors associated to decompositions of monomial representations of exponential Lie groups. J. Math. Soc. Jpn. 49(4), 647–661 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Inoue, J.: Holomorphically induced representations of some solvable Lie groups. J. Funct. Anal. 186(2), 269–328 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Inoue, J.: Holomorphically induced representations of exponential solvable semi-direct product groups \(\mathbb{R}\ltimes \mathbb{R}^n\). Adv. Pure Appl. Math. 6(2), 113–123 (2015)Google Scholar
  10. 10.
    Magneron, B.: Représentations induites holomorphes des groupes de Lie nilpotents et involutions complexes. C. R. Acad. Sci. Paris, Ser. I Math. 317, 37–42 (1993)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Magneron, B.: Involutions complexes et vecteurs sphériques associés pour les groupes de Lie nilpotents réels. Astérisque, no. 253 (1999)Google Scholar
  12. 12.
    Penney, R.: Abstract Plancherel theorems and a Frobenius reciprocity theorem. J. Funct. Anal. 18, 177–190 (1975)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Penney, R.: Holomorphically induced representations of exponential Lie groups. J. Funct. Anal. 64, 1–18 (1985)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Rossi, H., Vergne, M.: Representations of certain solvable Lie groups on Hilbert spaces of holomorphic functions and the application to the holomorphic discrete series of a semisimple Lie group. J. Funct. Anal. 13, 324–389 (1973)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Education Center, Organization for Educational Support and International AffairsTottori UniversityTottoriJapan

Personalised recommendations