Quantization of Color Lie Bialgebras

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 290)


The main purpose of this paper is to study Quantization of color Lie bialgebras, generalizing to the color case the approach by Etingof–Kazhdan which was considered for superbialgebras by Geer. Moreover we discuss Drinfeld category, Quantization of Triangular color Lie bialgebras and Simple color Lie bialgebras of Cartan type.


Quantization Color Lie bialgebra Color Hopf algebra 


  1. 1.
    Andruskiewitsch, N.: Lie superbialgebras and Poisson-Lie supergroups. Abh. Math. Semin. Univ. Hamburg 63, 147–163 (1993)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Drinfeld, V.G.: Hamiltonian lie groups, lie bialgebras and the geometric meaning of the classical Yang-Baxter equation. Sov. Math. Dokl. 27(1), 68–71 (1983)Google Scholar
  3. 3.
    Drinfeld, V.G.: Quasi-Hopf algebras. Algebra i Analiz 1(6), 114–148 (1989)MathSciNetGoogle Scholar
  4. 4.
    Drinfel’d, V.G.: On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \(\rm Gal(\overline{\bf Q\rm }/{\bf Q\rm })\). Algebra i Analiz 2(4), 149–181 (1990)Google Scholar
  5. 5.
    Enriquez, B., Halbout, G.: Quantization of \(\Gamma \)-Lie bialgebras. J. Algebra 319(9), 3752–3769 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Etingof, P., Kazhdan, D.: Quantization of Lie bialgebras. I. Selecta Math. (N.S.) 2(1), 1–41 (1996)Google Scholar
  7. 7.
    Etingof, P., Schiffmann, O.: Lectures on Quantum Groups, 2nd edn. Lectures in Mathematical Physics, vol. 0. International Press, Somerville (2002)Google Scholar
  8. 8.
    Geer, N.: Etingof-Kazhdan quantization of Lie superbialgebras. Adv. Math. 207(1), 1–38 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hurle, B., Makhlouf, A.: Color Lie bialgebras: Big bracket, cohomology and deformations. Geometric and Harmonic Analysis on Homogeneous Spaces and Applications, pp. 69–115. Springer International Publishing, Cham (2017)Google Scholar
  10. 10.
    Karaali, G.: Constructing r-Matrices on simple Lie superalgebras. J. Algebra 282, 83–102 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras, III. J. AMS 7, 335–381 (1994)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kelly, G.M.: Basic Concepts of Enriched Category Theory. London Mathematical Society Lecture Note Series, vol. 64. Cambridge University Press, Cambridge (1982)Google Scholar
  13. 13.
    Lecomte, P.B.A., Roger, C.: Modules et cohomologie des bigèbres de Lie. C. R. Acad. Sci. Paris Sér. I Math. 310, 405–410 (1990)Google Scholar
  14. 14.
    Nijenhuis, A., Richardson, R.W.: Deformation of homomorphisms of Lie group and Lie algebras. Bull. Am. Math. Soc. 73, 175–179 (1967)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Scheunert, M.: Generalized Lie algebras. J. Math. Phys. 20(4), 712–720 (1979)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Scheunert, M., Zhang, R.B.: Cohomology of Lie superalgebras and their generalizations. J. Math. Phys. 39(9), 5024–5061 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Semenov-Tian-Shansky, M.A.: What is a classical \(r\) -matrix? Funct. Anal. Appl. 17(4), 259–272 (1983)CrossRefGoogle Scholar
  18. 18.
    Yamane, H.: Quantized enveloping algebras associated with simple Lie superalgebras and their universal \(R\)-matrices. Publ. Res. Inst. Math. Sci. 30(1), 15–87 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IRIMAS-département de mathématiquesUniversité de Haute-AlsaceMulhouseFrance

Personalised recommendations