Self-Chabauty-isolated Locally Compact Groups

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 290)


Let G be a locally compact group. We denote by \({\mathcal {SUB}}\left( G\right) \) the space of closed subgroups of G equipped with the Chabauty topology. The group G is called self-Chabauty-isolated if the point G is isolated in \({\mathcal {SUB}}\left( G\right) \). In this paper we are interested in the following question: Give necessary and sufficient conditions for the group G to be a self-Chabauty-isolated.


Locally compact group Lie group Pro-Lie group Discrete subgroup Chabauty topology Frattini subgroup 

1991 Mathematics Subject Classification

22D05 54B20 22E40 


  1. 1.
    Abert, M., Bergeron, N., Biringer, I., Gelander, T., Nikolov, N., Raimbault, J., Samet, I.: On the growth of \(L^2\)-invariants for sequences of lattices in Lie groups. To appear in Annals of MathematicsGoogle Scholar
  2. 2.
    Benedetti, R., Petronio, C.: Lectures on hyperbolic geometry. Springer, Berlin (1992)CrossRefGoogle Scholar
  3. 3.
    Bridson, M., De La Harpe, P., Kleptsyn, V.: The Chabauty space of closed subgroups of the three-dimensional Heisenberg group. Pacific J. Math. 240, 1–48 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Caprace, P.-E., Monod, N.: Decomposing locally compact groups into simple pieces. Math. Proc. Camb. Philos. Soc. 150, 97–128 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chabauty, C.: Limite d’ensemble et géométrie des nombres. Bull. Soc. Math. France 78, 143–151 (1950)MathSciNetCrossRefGoogle Scholar
  6. 6.
    De Cornulier, Y.: On the Chabauty space of locally compact abelian groups. Algebr. Geom. Topol. 11, 2007–2035 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    De la Harpe, P.: Spaces of closed subgroups of locally compact groups. arXiv:0807.2030v2 [math GR]. Last accessed 12 Nov 2008
  8. 8.
    Dixon, J.D., Du Sauty, M.P.F., Mann, A., Segal, D.: Analytic-\(p\) groups, 2nd edn. Cambridge University Press, Cambridge (2003)Google Scholar
  9. 9.
    Fisher, S., Gartside, P.: On the space of subgroups of a compact group I. Topology Appl. 156, 862–871 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gartside, P., Smith, P.: Counting the closed subgroups of profinite groups, J. Group Theory 13, 41–61 (2010)Google Scholar
  11. 11.
    Gelander, T.: Lecture notes on invariant random subgroups and lattices in rank one and higher rank. arXiv:1503.08402
  12. 12.
    Gelander, T., Levit, A.: Invariant random subgroups over non-archemedean local fields. arXiv:1503.08402
  13. 13.
    Glasner, Y., Kitroser, D., Melleray, J.: From isolated subgroups to generic permutation representations. J. London Math. Soc. 94, 688–708 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Haettel, T.: L’espace des sous-groupes fermés de \(\mathbb{R}\times \mathbb{Z}\). Algebr. Geom. Topol. 10, 1395–1415 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hamrouni, H., Kadri, B.: On the compact space of closed subgroups of locally compact groups. J. Lie Theory 23, 715–723 (2014)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Hamrouni, H., Kadri, B.: On the connectedness of the Chabauty space of a locally compact prosolvable group. Adv. Pure Appl. Math. 6, 97–111 (2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Hamrouni, H., Firas, S.: On the continuity of the centralizer map of a locally compact group. J. Lie Theory 26, 117–134 (2016)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis I. Springer, Berlin (1963)CrossRefGoogle Scholar
  19. 19.
    Hofmann, K.H., Morris, S.A.: The structure of compact groups. De Gruyter, Berlin (1998). Revised and Augmented, 3rd edn (2013)Google Scholar
  20. 20.
    Hofmann, K.H., Morris, S.A.: Open mapping theorem for topological groups. Topol. Proc. 31, 533–551 (2007)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Hofmann, K.H., Morris, S.A., Stroppel, M.: Varieties of topological groups, Lie groups and SIN-groups. Colloq. Math. LXX, 151–163 (1996)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Nikolov, N., Segal D.: On normal subgroups of compact groups. J. Eur. Math. Soc. 16, 597–618 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ribes, L., Zalesskii, P.A.: Profinite Groups, 2nd edn. Springer, Berlin (2011)Google Scholar
  24. 24.
    Robinson, D.J.S.: A course in the theory of groups (Second Edition), Graduate Texts in Mathematics, vol. 80. Springer, Berlin (1982)CrossRefGoogle Scholar
  25. 25.
    Serre, J.P.: Lectures on the Mordell-Weil theorem. Vieweg, Braunschweig (1989)CrossRefGoogle Scholar
  26. 26.
    Willis, G.: Totally disconnected, nilpotent, locally compact groups. Bull. Austral. Math. Soc. 55, 143–146 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Sciences at SfaxSfax UniversitySfaxTunisia

Personalised recommendations