Advertisement

Designing a Supply Chain for the Generation of Bioenergy from the Anaerobic Digestion of Citrus Effluents

  • Erik Samuel Rosas-Mendoza
  • Joahnn Hernando Palacios-Ríos
  • Juan Manuel Méndez-Contreras
  • Norma Alejandra Vallejo-Cantú
  • Alejandro Alvarado-LassmanEmail author
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 166)

Abstract

Recently, Mexico was positioned as one of the main countries in citrus production, with approximately 7.6 million tons per year from an area of 550,000 ha. The annual production is equivalent in value to approximately 930 million USD. Although, the supply of citrus in Mexico is about 7.6 million tons per year, this amount is made up of national production and imports. There are three possible routes that contribute to the supply of citrus, i.e., fresh consumption, processing, and export, which correspond to 63, 27, and 10% of the national supply, respectively. Large amounts of liquid residues are generated when the citrus is processed. Inadequate management of these citrus effluents, which have high organic loads and low pH, causes negative environmental impacts as well as social and economic problems. However, anaerobic digestion is a viable and sustainable alternative for the management of citrus effluents because it takes advantage of the physicochemical characteristics of this type of wastewater to generate biogas as a value-added product. The main objective of the study presented in this chapter was to design a supply chain that analyzes and integrates citrus production and processing, the generation and treatment of citrus effluents by anaerobic digestion, and the production of biogas the generation of electricity which can then be used in the citrus processing plants. The results of this analysis indicated that the estimated 2.7 million m3 of citrus effluents that are being generated annually in Mexico could produce 1.6 million m3 of methane (at standard temperature and pressure) and 4.8 GWh of net electricity.

Keywords

Supply chain Bioenergy Anaerobic digestion Citrus effluents Electrical energy 

Notes

Acknowledgements

Authors acknowledge the support provided by the Tecnológico Nacional de México (TecNM) and the Consejo Nacional de Ciencia y Tecnología (CONACYT).

References

  1. 1.
    Alvarado-Lassman, A., Sandoval-Ramos, A., Flores-Altamirano, M.G., Vallejo-Cantu, N.A., Méndez-Contreras, J.M.: Strategies for the startup of methanogenic inverse fluidized-bed reactors using colonized particles. Water Environ. Res. 82(5), 387–391 (2010).  https://doi.org/10.2175/106143009X12487095237233CrossRefGoogle Scholar
  2. 2.
    Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M.: Biological effects of essential oils. Food Chem. Toxicol. 46, 446–475 (2008).  https://doi.org/10.1016/j.fct.2007.09.106CrossRefGoogle Scholar
  3. 3.
    Balaman, Ş.Y., Selim, H.: A network design model for biomass to energy supply chains with anaerobic digestion systems. Appl. Energy 130, 289–304 (2014).  https://doi.org/10.1016/j.apenergy.2014.05.043CrossRefGoogle Scholar
  4. 4.
    Begoña, R., Flotats, X.: Effect of limonene on batch anaerobic digestion of citrus peel waste. Biochem. Eng. J. 109, 9–18 (2016).  https://doi.org/10.1016/j.bej.2015.12.011CrossRefGoogle Scholar
  5. 5.
    Berk, Z.: Citrus Fruit Processing, 1st edn., p. 9. Elsevier, Amsterdam (2016)CrossRefGoogle Scholar
  6. 6.
    Calabrò, P., Panzera, M.: Anaerobic digestion of ensiled orange peel waste: preliminary batch results. Therm. Sci. Eng. Prog. 6, 355–360 (2018).  https://doi.org/10.1016/j.tsep.2017.12.011CrossRefGoogle Scholar
  7. 7.
    Calabrò, P.S., Pontoni, L., Porqueddu, I., Greco, R., Pirozzi, F., Malpei, F.: Effect of the concentration of essential oil on orange peel waste biomethanization: preliminary batch results. Waste Manag. 48, 440–447 (2016).  https://doi.org/10.1016/j.tsep.2017.12.011CrossRefGoogle Scholar
  8. 8.
    CFE (Comisión Federal de Electricidad): Tarifas generales en media tensión. http://app.cfe.gob.mx/Aplicaciones/CCFE/Tarifas/Tarifas/Tarifas_industria.asp?Tarifa=CMAMF&Anio=2018 (2018)
  9. 9.
    Citrofrut: Productos cítricos. http://www.citrofrut.com.mx/producto1.html (2019a)
  10. 10.
    Citrofrut: Colaterales. http://www.citrofrut.com.mx/producto2.html (2019b)
  11. 11.
    Dambolena, J., López, A., Cánepa, M., Theumer, M., Zygadlo, J.: Inhibitory effect of cyclic terpenes (limonene, menthol, menthone and thymol) on fusarium verticillioides MRC 826 growth and fumonisin B1 biosynthesis. Toxicon 51, 37–44 (2008).  https://doi.org/10.1016/j.toxicon.2007.07.005CrossRefGoogle Scholar
  12. 12.
    Espina, L., Somolinos, M., Loran, S., Conchello, P., García, D.: Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control 22, 896–902 (2011).  https://doi.org/10.1016/j.foodcont.2010.11.021CrossRefGoogle Scholar
  13. 13.
    FAO STAT (Organización Mundial de las Naciones Unidas para la Agricultura y Alimentación): Cultivos. http://www.fao.org/faostat/es/#data/QC (2019a)
  14. 14.
    FAOSTAT (Organización Mundial de las Naciones Unidas para la Agricultura y Alimentación): Valor de la Producción Agrícola. http://www.fao.org/faostat/es/#data/QV (2019b)
  15. 15.
    Fisher, K., Phillips, C.: Potential antimicrobial uses of essential oils in food: is citrus the answer. Trends Food Sci. Technol. 19, 156–164 (2008).  https://doi.org/10.1016/j.tifs.2007.11.006CrossRefGoogle Scholar
  16. 16.
    García-Gonzalo, D., Espina, L., Gelaw, T., De Lamo-Castellvi, S., Pagán, R.: Mechanism of bacterial inactivation by (+)-limonene and its potential use in food preservation combined processes. PLoS ONE 8, 1–11 (2013).  https://doi.org/10.1371/journal.pone.0056769CrossRefGoogle Scholar
  17. 17.
    Gerardi, M.: The Microbiology of Anaerobic Digesters, p. 51. Wiley, Hoboken (2013)Google Scholar
  18. 18.
    Gómez, M.A., Schwentesius, R.: La agroindustria de naranja en México, 1st edn. CIESTAAM, México (1997)Google Scholar
  19. 19.
    Graunlich, R.: Potential fermentation products from citrus processing wastes. Food Technol. 12, 94–97 (1983)Google Scholar
  20. 20.
    Hull, W.Q., Lindsay, C.W., Baier, W.E.: Chemicals from oranges. Ind. Eng. Chem. 45, 876–890 (1953).  https://doi.org/10.1021/ie50521a018CrossRefGoogle Scholar
  21. 21.
    IQCitrus (Internacional Química de Cobre, división Cítricos): Proceso de extracción. http://www.iqcitrus.com/index.php?option=com_content&view=article&id=72&Itemid=82/ (2019)
  22. 22.
    Jaroenkit, P., Matan, N., Nisoa, M.: In vitro and in vivo activity of citronella oil for the control of spoilage bacteria of semi dried round scad (Decapterus maruadsi). Int. J. Med. Aromat. Plants 1, 234–239 (2011)Google Scholar
  23. 23.
    Juguera Allende: Procesos. http://www.jugueraallende.com/ (2019)
  24. 24.
    Khalid, A., Arshad, M., Anjum, M., Mahmood, T., Dawson, L.: The anaerobic digestion of solid organic waste. Waste Manag. 31, 1737–1744 (2011).  https://doi.org/10.1016/j.wasman.2011.03.021CrossRefGoogle Scholar
  25. 25.
    Koppar, A., Pullammanappallil, P.: Anaerobic digestion of peel waste and wastewater for onsite energy generation in a citrus processing facility. Energy 60, 62–68 (2013).  https://doi.org/10.1016/j.energy.2013.08.007CrossRefGoogle Scholar
  26. 26.
    Lane, C.: Prospects for anaerobic treatment of food processing effluents in Australia. Food Technol. Aust. 34, 410–411 (1982).  https://doi.org/10.1016/j.energy.2013.08.007CrossRefGoogle Scholar
  27. 27.
    Luis-Garcez, A.L.: Codigestión de residuos sólidos de la industria citrícola en un digestor anaerobio a nivel piloto. Tesis de maestría. México (2015)Google Scholar
  28. 28.
    Martín, M., Siles, J., Chica, A., Martín, A.: Modelling the anaerobic digestion of wastewater derived from the pressing of orange peel produced in orange juice manufacturing. Biores. Technol. 101, 3909–3916 (2010).  https://doi.org/10.1016/j.biortech.2009.12.146CrossRefGoogle Scholar
  29. 29.
    Mota-López, D.R., Sánchez-Ramírez, C., Alor-Hernández, G., García-Alcaraz, J.L., Rodríguez-Pérez, S.I.: Evaluation of the impact of water supply disruptions in bioethanol production. Comput. Ind. Eng. 1068–1088 (2019).  https://doi.org/10.1016/j.cie.2018.11.041CrossRefGoogle Scholar
  30. 30.
    Muylaert, M.S., Sala, J., Freitas, M.A.V.: Consumo de energia e aquecimento do planeta: Análise do mecanismo de desenvolvimento limpo (MDL) do Protocolo de Quioto. Case studies. Post-graduate Engineering Programs Coordination (COPPE), Rio de Janeiro (2000)Google Scholar
  31. 31.
    Naseem, U., Muhammad, A., Javid, A., Asfandyar, K., Ziaur, R., Sahibzada, M., Farhat, A., Arshad, H., Muhammad, K., Muhammad, N.: Chemical composition and antimicrobial activity evaluation of sweet oranges (Citrus cinenses) peels essential oil. J. Pharm. Res. 3, 1698–1700 (2012)Google Scholar
  32. 32.
    Nutiu, E.: Anaerobic purification installation with production of biogas and liquid fertilizers. Procedia Technol. 12, 632–636 (2014).  https://doi.org/10.1016/j.protcy.2013.12.541CrossRefGoogle Scholar
  33. 33.
    Rendon-Sagardi, M.A., Sanchez-Ramirez, C., Cortes-Robles, G., Alor-Hernandez, G., Cedillo-Campos, M.G.: Dynamic analysis of feasibility in ethanol supply chain for biofuel production in Mexico. Appl. Energy 123, 358–367 (2014).  https://doi.org/10.1016/j.apenergy.2014.01.023CrossRefGoogle Scholar
  34. 34.
    Rezzadori, K., Benedetti, S., Amante, E.: Proposals for the residues recovery: orange waste as raw material for new products. Food Bioprod. Process. 90, 606–614 (2012).  https://doi.org/10.1016/j.fbp.2012.06.002CrossRefGoogle Scholar
  35. 35.
    Rosas-Mendoza, E.S., Méndez-Contreras, J.M., Martínez-Sibaja, A., Vallejo-Cantú, N.A., Alvarado-Lassman, A.: Anaerobic digestion of citrus industry effluents using an anaerobic hybrid reactor. Clean Technol. Environ. Policy 20, 1387–1397 (2018).  https://doi.org/10.1007/s10098-018-1491-9CrossRefGoogle Scholar
  36. 36.
    SAGARPA (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación): Estudio de Mercado para identificación de necesidades de infraestructura logística para la comercialización de jugo de cítricos en Veracruz. http://www.sagarpa.mx/agronegocios/Documents/Estudios_promercado/SISTPROD_CITRICOS.pdf (2019)
  37. 37.
    Salgado-Segado, S., Lozano, L.J., de los Ríos, A.P., Hernández-Fernández, F.J., Godínez, C., Juan, D.: Process design and economic analysis of a hypothetical bioethanol production plant using carob pod as feedstock. Bioresour. Technol. 104, 324–328 (2012).  https://doi.org/10.1016/j.biortech.2011.10.046CrossRefGoogle Scholar
  38. 38.
    Satari, B., Karimi, K.: Citrus processing wastes: environmental impacts, recent advances, and future perspectives in total valorization. Resour. Conserv. Recycl. 129, 153–167 (2018).  https://doi.org/10.1016/j.resconrec.2017.10.032CrossRefGoogle Scholar
  39. 39.
    Sharma, K., Mahato, N., Cho, M.H.: Converting citrus wastes into value-added products: economic and environmently friendly approaches. Nutrition 34, 29–46 (2017).  https://doi.org/10.1016/j.nut.2016.09.006CrossRefGoogle Scholar
  40. 40.
    SENER (Secretaría de Energía): Balance Nacional de Energía 2016. https://www.gob.mx/cms/uploads/attachment/file/288692/Balance_Nacional_de_Energ_a_2016__2_.pdf (2016)
  41. 41.
    SIAP (Servicio de Información Agroalimentaria y Pesquera): Anuario Estadístico de la Producción Agrícola. https://nube.siap.gob.mx/cierreagricola/ (2019)
  42. 42.
    Sun, J.: D-limonene: safety and clinical applications. Altern. Med. Rev. 2, 259–264 (2007)Google Scholar
  43. 43.
    Surendra, K.C., Takara, D., Hashimoto, A.G., Khanal, S.K.: Biogas as a sustainable energy source for developing countries: opportunities and challenges. Renew. Sustain. Energy Rev. 31, 846–859 (2014).  https://doi.org/10.1016/j.rser.2013.12.015CrossRefGoogle Scholar
  44. 44.
    Speece, R.E.: Anaerobic biotechnology for industrial wastewater treatment. Environ. Sci. Technol. 17, 416–427 (1983). https://pubs.acs.org/doi/abs/10.1021/es00115a001CrossRefGoogle Scholar
  45. 45.
    Themelis, N.J., Ulloa, P.A.: Methane generation in landfills. Renew. Energy 32, 1243–1257 (2007).  https://doi.org/10.1016/j.renene.2006.04.020CrossRefGoogle Scholar
  46. 46.
    USDA FAS (United States Department of Agriculture. Foreign Agricultural Service): Citrus: World Markets and Trade. https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads (2018)
  47. 47.
    Valdés, P., Guerrero, B., Nieves, G., De la Torre, V.: Tratamiento de aguas residuales cítricas por vía anaerobia. Revista Internacional de Contaminación Ambiental 10, 69–75 (1994)Google Scholar
  48. 48.
    Vuuren, S., Viljoen, A.: Antimicrobial activity of limonene enantiomers and 1,8-cineole alone and in combination. Flavour Fragrance J. 22, 540–544 (2007).  https://doi.org/10.1002/ffj.1843CrossRefGoogle Scholar
  49. 49.
    Wang, L., Xu, H., Yuan, F., Pan, Q., Fan, R., Gao, Y.: Physicochemical characterization of five types of citrus dietary fibers. Biocatal. Agric. Biotechnol. 4, 250–258 (2015).  https://doi.org/10.1016/j.bcab.2015.02.003CrossRefGoogle Scholar
  50. 50.
    Ward, A.J., Hobbs, P.J., Holliman, P.J., Jones, D.L.: Optimization of the anaerobic digestion of agricultural resources. Biores. Technol. 99, 7928–7940 (2008).  https://doi.org/10.1016/j.biortech.2008.02.044CrossRefGoogle Scholar
  51. 51.
    Zema, D.A., Calabrò, P.S., Folino, A., Tamburino, V., Zappia, G., Zimbone, S.M.: Valorisation of citrus processing waste: a review. Waste Manag. 80, 252–273 (2018).  https://doi.org/10.1016/j.wasman.2018.09.024CrossRefGoogle Scholar
  52. 52.
    Zema, D., Fòlino, A., Zappia, G., Calabrò, P., Tamburino, V., Zimbone, S.: Anaerobic digestion of orange peel in a semi-continuous pilot plant: an environmentally sound way of citrus waste management in agro-ecosystems. Sci. Total Environ. 630, 401–408 (2018).  https://doi.org/10.1016/j.scitotenv.2018.02.168CrossRefGoogle Scholar
  53. 53.
    Zukerman, I.: Effect of oxidized D-limonene on micro-organisms. Nature 168, 517 (1951)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Erik Samuel Rosas-Mendoza
    • 1
  • Joahnn Hernando Palacios-Ríos
    • 2
  • Juan Manuel Méndez-Contreras
    • 3
  • Norma Alejandra Vallejo-Cantú
    • 3
  • Alejandro Alvarado-Lassman
    • 3
    Email author
  1. 1.CONACYT-Tecnológico Nacional de México, Instituto Tecnológico de OrizabaOrizabaMexico
  2. 2.Research and Development Institute for the Agri-EnvironmentQuebec CityCanada
  3. 3.División de Estudios de Posgrado e InvestigaciónTecnológico Nacional de México, Instituto Tecnológico de OrizabaOrizabaMexico

Personalised recommendations