Skip to main content

Football Predictions Based on Time Series with Granular Event Segmentation

  • Conference paper
  • First Online:
  • 556 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1020))

Abstract

The method of data quality management in mining fuzzy relations from time series of sports data is proposed. The fuzzy relation-based model of time series with granular event segmentation is developed. Correction of the available expert and experimental information is carried out at the stage of structural tuning of the fuzzy knowledge base. To improve the data set, it is advisable to extract events or specific areas of interest from the time series, rather than analyze the time series as a whole. Experts identify significant events in the form of trends and patterns at the stage of time series segmentation. At the stage of time series granulation, the events in the form of collection of time windows are transformed into fuzzy terms. Expert relationships “fuzzy events – match outcome” are subject to further correction in order to improve the predictive accuracy at the cost of removal of different types of biases in expert judgments. Biases in expert judgements (favorite/outsider bias, home team bias) can be revealed in paired comparative assessments chosen by an expert according to the 9-mark Saaty’s scale. The genetic algorithm is used for off-line finding the area of unbiased assessments with further adaptive correction of paired comparisons matrices embedded into the neural network. As a result, predictive ability of the method outperforms bookmakers’ predictions and, hence, provides the profitability against market odds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schumaker R, Solieman O, Chen H (2010) Sports data mining, vol 26. Integrated series in information systems. Springer, Heidelberg

    Book  Google Scholar 

  2. Severini TA (2014) Analytic methods in sports: using mathematics and statistics to understand data from Baseball, Football, Basketball, and other sports. CRC Press, New York

    Book  Google Scholar 

  3. Haghighat M, Hamid R, Nourafza N (2013) A review of data mining techniques for result prediction in sports. Adv Comput Sci Int J 2(5):7–12

    Google Scholar 

  4. Constantinou A, Fenton N (2017) Towards smart-data: improving predictive accuracy in long-term football team performance. Knowl-Based Syst 124:93–104. https://doi.org/10.1016/j.knosys.2017.03.005

    Article  Google Scholar 

  5. Rue H, Salvesen O (2000) Prediction and retrospective analysis of soccer matches in a league. Statistician 3:339–418. https://doi.org/10.1111/1467-9884.00243

    Article  Google Scholar 

  6. Karlis D, Ntzoufras I (2003) Analysis of sports data by using bivariate Poisson models. Statistician 52(3):381–393. https://doi.org/10.1111/1467-9884.00366

    Article  MathSciNet  Google Scholar 

  7. Dixon M, Pope P (2004) The value of statistical forecasts in the UK association football betting market. Int J Forecast 20:697–711. https://doi.org/10.1016/j.ijforecast.2003.12.007

    Article  Google Scholar 

  8. Tax N, Joustra YP (2015) Predicting the Dutch football competition using public data: a machine learning approach. Trans Knowl Data Eng 10(10):1–13. https://doi.org/10.13140/RG.2.1.1383.4729

    Article  Google Scholar 

  9. Bunker RP, Thabtah F (2019) A machine learning framework for sport result prediction. Appl Comput Inform 15(1):27–33. https://doi.org/10.1016/j.aci.2017.09.005

    Article  Google Scholar 

  10. Ivankovic Z, Rackovic M, Markoski B, Radosav D, Ivkovic M (2010) Analysis of basketball games using neural networks. In: 11th IEEE international symposium on computational intelligence and informatics. IEEE, Budapest, pp 251–256 https://doi.org/10.1109/CINTI.2010.5672237

  11. Joseph A, Fenton NE, Neil M (2006) Predicting football results using Bayesian nets and other machine learning techniques. Knowl-Based Syst 19(7):544–553. https://doi.org/10.1016/j.knosys.2006.04.011

    Article  Google Scholar 

  12. Baio G, Blangiardo M (2010) Bayesian hierarchical model for the prediction of football results. J Appl Stat 37(2):253–264. https://doi.org/10.1080/02664760802684177

    Article  MathSciNet  Google Scholar 

  13. Baboota R, Kaur H (2019) Predictive analysis and modelling football results using machine learning approach for English Premier League. Int J Forecast 35(2):741–755. https://doi.org/10.1016/j.ijforecast.2018.01.003

    Article  Google Scholar 

  14. Constantinou A, Fenton N, Neil M (2016) Integrating expert knowledge with data in Bayesian networks: preserving data-driven expectations when the expert variables remain unobserved. Expert Syst Appl 56:197–208. https://doi.org/10.1016/j.eswa.2016.02.050

    Article  Google Scholar 

  15. Min B, Kim J, Choe Ch, Eom H, (Bob) McKay RI (2008) A compound framework for sports results prediction: a football case study. Knowl-Based Syst 21(7):551–562. https://doi.org/10.1016/j.knosys.2008.03.016

    Article  Google Scholar 

  16. Liu F, Shi Y, Najjar L (2017) Application of design of experiment method for sports results prediction. Procedia Comput Sci 122:720–726. https://doi.org/10.1016/j.procs.2017.11.429

    Article  Google Scholar 

  17. Forrest D, Goddard J, Simmons R (2005) Odds-setters as forecasters: the case of English football. Int J Forecast 21:551–564. https://doi.org/10.1016/j.ijforecast.2005.03.003

    Article  Google Scholar 

  18. Graham I, Stott H (2008) Predicting bookmaker odds and efficiency for UK football. Appl Econ 40:99–109. https://doi.org/10.1080/00036840701728799

    Article  Google Scholar 

  19. Constantinou AC, Fenton NE, Neil M (2013) Profiting from an inefficient association football gambling market: prediction, risk and uncertainty using Bayesian networks. Knowl-Based Syst 50:60–86. https://doi.org/10.1016/j.knosys.2013.05.008

    Article  Google Scholar 

  20. Hvattum L, Arntzen H (2010) Using ELO ratings for match result prediction in association football. Int J Forecast 26(3):460–470. https://doi.org/10.1016/j.ijforecast.2009.10.002

    Article  Google Scholar 

  21. Leitner C, Zeileis A, Hornik K (2010) Forecasting sports tournaments by ratings of (prob)abilities: a comparison for the EURO 2008. Int J Forecast 26(3):471–481. https://doi.org/10.1016/j.ijforecast.2009.10.001

    Article  Google Scholar 

  22. Emara N, Owens D, Smith J, Wilmer L (2017) Serial correlation in National Football League play calling and its effects on outcomes. J Behav Exp Econ 69:125–132. https://doi.org/10.1016/j.socec.2017.01.007

    Article  Google Scholar 

  23. Martins R, Martins A, Neves L, Lima L, Flores E, do Nascimento M (2017) Exploring polynomial classifier to predict match results in football championships. Expert Syst Appl 83:79–93. https://doi.org/10.1016/j.eswa.2017.04.040

    Article  Google Scholar 

  24. Scarf Ph, Shi X (2008) The importance of a match in a tournament. Comput Oper Res 35(7):2406–2418. https://doi.org/10.1016/j.cor.2006.11.005

    Article  MathSciNet  MATH  Google Scholar 

  25. Geenens G (2014) On the decisiveness of a game in a tournament. Eur J Oper Res 232(1):156–168. https://doi.org/10.1016/j.ejor.2013.06.025

    Article  MathSciNet  MATH  Google Scholar 

  26. Rotshtein A, Posner M, Rakityanskaya A (2005) Football predictions based on a fuzzy model with genetic and neural tuning. Cybern Syst Anal 41(4):619–630. https://doi.org/10.1007/s10559-005-0098-4

    Article  MATH  Google Scholar 

  27. Yager R, Filev D (1994) Essentials of fuzzy modeling and control. Wiley, New York

    Google Scholar 

  28. Rotshtein A, Rakytyanska H (2012) Fuzzy evidence in identification, forecasting and diagnosis, vol 275. Studies in fuzziness and soft computing. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-25786-5

    Book  MATH  Google Scholar 

  29. Rotshtein A, Rakytyanska H (2013) Expert rules refinement by solving fuzzy relational equations. In: 6th IEEE conference on human system interaction proceedings. IEEE, Sopot, pp 257–264. https://doi.org/10.1109/HSI.2013.6577833

  30. Rotshtein A, Rakytyanska H (2014) Optimal design of rule-based systems by solving fuzzy relational equations. In: Hippe Z, Kulikowski L, Mroczek T, Wtorek J (eds) Issues and challenges in artificial intelligence, vol 559. Studies in computational intelligence. Springer, Cham, pp 167–178. https://doi.org/10.1007/978-3-319-06883-1_14

    Chapter  Google Scholar 

  31. Rotshtein A, Rakytyanska H (2012) Fuzzy genetic object identification: multiple-inputs multiple-outputs case. In: Hippe Z, Kulikowski J, Mroczek T (eds) Human-computer systems interaction - Part II, vol 99. Advances in intelligent and soft computing. Springer, Heidelberg, pp 375–394. https://doi.org/10.1007/978-3-642-23172-8_25

    Chapter  Google Scholar 

  32. Rakytyanska H (2017) Optimization of fuzzy classification knowledge bases using improving transformations. East-Eur J Enterp Technol 5(2):33–41. https://doi.org/10.15587/1729-4061.2017.110261

    Article  Google Scholar 

  33. Duan L, Yu F, Pedrycz W, Wang X, Yang X (2018) Time-series clustering based on linear fuzzy information granules. Appl Soft Comput 73:1053–1067. https://doi.org/10.1016/j.asoc.2018.09.032

    Article  Google Scholar 

  34. Lu W, Pedrycz W, Liu X, Yang J, Li P (2014) The modeling of time series based on fuzzy information granules. Expert Syst Appl 41(8):3799–3808. https://doi.org/10.1016/j.eswa.2013.12.005

    Article  Google Scholar 

  35. Ares J, Lara JA, Lizcano D, Suárez S (2016) A soft computing framework for classifying time series based on fuzzy sets of events. Inf Sci 330:125–144. https://doi.org/10.1016/j.ins.2015.10.014

    Article  Google Scholar 

  36. Fuchs E, Gruber Th, Pree H, Sick B (2010) Temporal data mining using shape space representations of time series. Neurocomputing 74(1–3):379–393. https://doi.org/10.1016/j.neucom.2010.03.022

    Article  Google Scholar 

  37. Lu W, Chen X, Pedrycz W, Liu X, Yang J (2015) Using interval information granules to improve forecasting in fuzzy time series. Int J Approx Reason 57:1–18. https://doi.org/10.1016/j.ijar.2014.11.002

    Article  MATH  Google Scholar 

  38. Rotshtein A, Rakytyanska H (2008) Diagnosis problem solving using fuzzy relations. IEEE Trans Fuzzy Syst 16(3):664–675. https://doi.org/10.1109/TFUZZ.2007.905908

    Article  Google Scholar 

  39. Rakityanskaya A, Rotshtein A (2007) Fuzzy relation-based diagnosis. Autom Remote Control 68(12):2198–2213. https://doi.org/10.1134/S0005117907120089

    Article  MathSciNet  MATH  Google Scholar 

  40. Rotshtein A, Rakytyanska H (2009) Adaptive diagnostic system based on fuzzy relations. Cybern Syst Anal 45(4):623–637. https://doi.org/10.1007/s10559-009-9130-4

    Article  MathSciNet  MATH  Google Scholar 

  41. Saaty T (1968) Mathematical models of arms control and disarmament. Wiley, New York

    MATH  Google Scholar 

  42. Football Results Online. https://www.myscore.com.ua/football/finland/veikkausliiga. Accessed 14 Apr 2019

  43. Mordeson J, Malik D, Cheng S-C (2000) Fuzzy mathematics in medicine. Phisica-Verlag, Heidelberg

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Rakytyanska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rakytyanska, H., Demchuk, M. (2020). Football Predictions Based on Time Series with Granular Event Segmentation. In: Lytvynenko, V., Babichev, S., Wójcik, W., Vynokurova, O., Vyshemyrskaya, S., Radetskaya, S. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2019. Advances in Intelligent Systems and Computing, vol 1020. Springer, Cham. https://doi.org/10.1007/978-3-030-26474-1_34

Download citation

Publish with us

Policies and ethics