Skip to main content

Resilience of Water Management Infrastructure

  • Chapter
  • First Online:
Resilience of Large Water Management Infrastructure

Abstract

This chapter presents a compilation of work conducted by the ASCE Task Committee ‘Infrastructure Impacts of Landscape-driven Weather Change’ under the ASCE Watershed Management Technical Committee and the ASCE Hydroclimate Technical Committee. The chapter argues for explicitly considering the well-established feedbacks triggered by infrastructure systems to the land-atmosphere system via landscape change. A definition for Infrastructure Resilience (IR) at the intersection of extreme weather and climate is provided for the engineering community. The broader range of views and issues than what is currently in the front view of engineering practice is expected to ensure more robust approaches for resilience assessment by the engineering community by affording a greater number of ‘scenarios’ in its decision-making. The engineering community needs to understand the predictive uncertainty of changes to extreme weather and climate and how it can be addressed to improve infrastructure design and operations.

With permission from ASCE, this chapter is adapted from: Local-To-Regional Landscape Drivers of Extreme Weather and Climate: Implications for Water Infrastructure Resilience, ASCE Journal of Hydrologic Engineering, Vol 20, 7, July 2015.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbs DJ (1999) A numerical modeling study to investigate the assumptions used in the calculation of probable maximum precipitation. Water Resour Res 35(3):785–796

    Article  Google Scholar 

  • American Meteorological Society (1959) Glossary of meteorology. p 638

    Google Scholar 

  • ASCE (American Society of Civil Engineers) (2013) 2013 Report card for nation’s infrastructure, American Society of Civil Engineers (ASCE), infrastructure report card. ASCE Publication. Available online at: http://www.infrastructurereportcard.org/grades/

  • Barnston AG, Schickedanz PT (1984) The effect of irrigation on warm season precipitation in the Southern Great Plains. J Appl Meteorol Clim 23(6)

    Article  Google Scholar 

  • Beauchamp J, Leconte R, Trudel M, Brissette F (2013) Estimation of the summer-fall PMP and PMF of a northern watershed under a changed climate. Water Resour Res 49(6):3852–3862

    Article  Google Scholar 

  • Biemans H, Haddeland I, Kabat P, Ludwig F, Hutjes RWA, Heinke J, von Bloh W, Gerten D (2011) Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resour Res 47:1–1

    Article  Google Scholar 

  • Burian SJ (2006) Urbanization effect on rainfall: implications for drainage infrastructure performance and design. In: Ruth M (ed) Smart growth and climate change: regional development, infrastructure and adaptation. Edward Elgar, Northampton, pp 207–242

    Google Scholar 

  • Chagnon SA (1979) Precipitation changes in summer caused by St. Louis. Science 205:402–404

    Article  Google Scholar 

  • Cotton WR, Pielke RA Sr. (2007) Human impacts on weather and climate, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • DeAngelis A, Dominguez F, Fan Y, Robock A, Kustu MD, Robinson D (2010) Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J Geophys Res 115:D15115. https://doi.org/10.1029/2010JD013892

    Article  Google Scholar 

  • Degu AM, Hossain F (2012) Investigating the mesoscale impact of artificial reservoirs on frequency of rain. Water Resour Res https://doi.org/10.1029/2011wr010966

  • Degu AM, Hossain F, Niyogi D, Pielke R Sr, Shepherd JM, Voisin N, Chronis T (2011) The influence of large dams on surrounding climate and precipitation patterns. Geophys Res Lett 38:L04405. https://doi.org/10.1029/2010GL046482

    Article  Google Scholar 

  • Fall S, Niyogi D, Gluhovsky A, Pielke Sr RA, Kalnay E, Rochon G (2009) Impacts of land use land cover on temperature trends over the continental United States: assessment using the North American Regional Reanalysis. Int J Climatol https://doi.org/10.1002/joc.1996

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G et al (2007) Radiative forcing of climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 129–234

    Google Scholar 

  • Galloway JN et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2):153–226. https://doi.org/10.1007/s10533-004-0370-0

    Article  CAS  Google Scholar 

  • Georgescu M, Morefield PE, Bierwagen BG, Weaver CP (2014) Urban adaptation can roll back warming of emerging megapolitan regions. In: Proceedings of the National Academic Sciences (PNAS), https://doi.org/10.1073/pnas.1322280111

    Article  CAS  Google Scholar 

  • Gleick PH (2002) The world’s water: the biennial report on freshwater resources (2002–2003). Island Press, Washington DC

    Google Scholar 

  • Graf WL (1999) Dam nation: a geographic census of American dams and their large-scale hydrologic impacts. Water Resour Res 35(4):1305–1311

    Article  Google Scholar 

  • Graf WL (2006) Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology 79(3–4):336–360

    Article  Google Scholar 

  • Graf WL, Wohl E, Sinha T, Sabo JL (2010) Sedimentation and sustainability of western American reservoirs. Water Resour Res 46:W12535. https://doi.org/10.1029/2009WR008836

    Article  Google Scholar 

  • GWSP Digital Water Atlas (2008) Map 41: Dams and capacity of artificial reservoirs (V1.0). Global Water Systems Project. Available online at http://atlas.gwsp.org

  • Hossain F (2010) On the empirical relationship between the presence of large dams the alteration in extreme precipitation. Natural Hazards Review. https://doi.org/10.1061/(asce)nh.1527-6996.0000013

    Article  Google Scholar 

  • Hossain F, Kalyanapu A (2012) Cities, dams and extreme weather, feature article. ASCE Civil Engineering Magazine, December Issue

    Google Scholar 

  • Hossain F, Jeyachandran I, Pielke Sr RA (2009) Have large dams altered extreme precipitation? EOS-AGU 90(48):453–454

    Google Scholar 

  • Hossain F, Jeyachandran I, Pielke Sr RA (2010) Dam safety effects due to human alteration of extreme precipitation. Water Resour Res 46:W03301. https://doi.org/10.1029/2009wr007704

  • Hossain F, Degu AM, Yigzaw W, Niyogi D, Burian S, Shepherd JM, Pielke RA Sr (2012) Climate feedback-based considerations to dam design, operations and water management in the 21st century. J Hydrol Eng 17(8):837–850. https://doi.org/10.1061/(ASCE)HE.1943.5584.0000541

    Article  Google Scholar 

  • Hossain F, Arnold J, Beighley E, Brown C, Burian S, Chen J, Madadgar S, Mitra A, Niyogi D, Pielke RA, Tidwell V, Wegner D (2015) Local-to-regional landscape drivers of extreme weather and climate: implications for water infrastructure resilience, infrastructure task committee report to ASCE. J Hydrol Eng 20(7). https://doi.org/10.1061/(asce)he.1943-5584.0001210

    Article  Google Scholar 

  • IPCC—Intergovernmental Panel on Climate Change (2007) An assessment of the intergovernmental panel on climate change: synthesis report. www.ipcc.ch, Last accessed 8 Dec 2008

  • Kalyanapu AJ, Judi DR, McPherson TN, Burian SJ (2011) Monte Carlo-based flood modeling framework for estimating probability weighted flood risk. J Flood Risk Manage 5:37–48

    Article  Google Scholar 

  • Kellner O, Niyogi D (2013) Land-surface heterogeneity signature in tornado climatology? An illustrative analysis over Indiana 1950–2012. Earth Interact doi: http://dx.doi.org/10.1175/2013EI000548.1

    Article  Google Scholar 

  • Kenny JF, Barber NL, Hutson SS, Linsey KS, Lovelace JK, Maupin M (2009) Estimated use of water in the United States in 2005. USGS Circular: 1344. ISBN: 978-1-4113-2600-2

    Google Scholar 

  • Kunkel KE, Karl TR, Easterling DR, Redmond K, Young J, Yin X, Hennon P (2013) Probable maximum precipitation and climate change. Geophys Res Lett 40:1402–1408. https://doi.org/10.1002/grl.50334

    Article  Google Scholar 

  • Kunstmann H, Knoche HR (2011) Tracing water pathways from the land surface through the atmosphere: a new RCM based evapotranspiration tagging method and its application to the lake volta region in West Africa. J Geophys Res 17

    Google Scholar 

  • Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for GSMs. J Geophy Res 99(D7):14415–14428. https://doi.org/10.1029/94JD00483

    Article  Google Scholar 

  • Mahmood R, Pielke RA Sr, Hubbard KG, Niyogi D, Bonan G, Lawrence P, Baker B, McNider R, McAlpine C, Etter A, Gameda S, Qian B, Carleton A, Beltrán-Przekurat A, Chase T, Quintanar AI, Adegoke JO, Vezhapparambu S, Conner G, Asefi S, Sertel E, Legates DR, Wu Y, Hale R, Frauenfeld OW, Watts A, Shepherd M, Mitra C, Anantharaj VG, Fall S, Lund R, Nordfelt A, Blanken P, Du J, Chang H-I, Leeper R, Nair US, Dobler S, Deo R, Syktus J Sr (2010) Impacts of land use land cover change on climate and future research priorities. Bull Am Meteor Soc 91:37–46. https://doi.org/10.1175/2009BAMS2769.1

    Article  Google Scholar 

  • Mahmood R, Pielke Sr. RA, Hubbard K, Niyogi D, Dirmeyer P, McAlpine C, Carleton A, Hale R, Gameda S, Beltrán-Przekurat A, Baker B, McNider R, Legates D, Shepherd J, Du J, Blanken P, Frauenfeld O, Nair U, Fall S (2013) Land cover changes and their biogeophysical effects on climate. Int J Climatol https://doi.org/10.1002/joc.3736

    Article  Google Scholar 

  • Narisma T, Pitman AJ (2006) Exploring the sensitivity of the australian climate to regional land-cover-change scenarios under increasing CO2 concentrations and warmer temperature. Earth Interact 10:1–27

    Article  Google Scholar 

  • Ohara N, Kavvas ML, Kure S, Chen ZQ, Jang S, Tan E (2011) A physically based estimation of maximum precipitation over American River Watershed, California. J Hydrol Eng 16(4):351–361. https://doi.org/10.1061/900(ASCE)HE.1943-5584.0000324

  • Pielke RA Sr (1992) A comprehensive meteorological modeling system—RAMS. Meteorol Atmos Phys 49:69–91

    Article  Google Scholar 

  • Pielke RA, Avissar R (1990) Influence of landscape structure on local and regional climate. Landscape Ecol 4:133–155

    Article  Google Scholar 

  • Pielke RA Sr, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, Goldewijk K, Nair U, Betts R, Fall S, Reichstein M, Kabat P, de Noblet-Ducoudré N (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. WIREs Clim Change 2:828–850. https://doi.org/10.1002/wcc.144

    Article  Google Scholar 

  • Pitman AJ (2003) The evolution of, and revolution in, land surface schemes designed for climate models. Int J Climatol 23:479–510. https://doi.org/10.1002/joc.893

    Article  Google Scholar 

  • Pizarro R, Garcia-Chevesich P, Valdez R, Dominguez F, Hossain F, Olivares C, Morales C, Balocchi F (2012) Inland water bodies in Chile can locally increase rainfall intensity. J Hydrol 481(25):56–63

    Google Scholar 

  • Puma MJ, Cook BI (2010) Effects of irrigation on global climate during the 20th century. J Geophys Res 115:D16120. https://doi.org/10.1029/2010JD014122

    Article  Google Scholar 

  • Rakhecha PR, Singh VP (2009) Applied hydrometeorology. Springer, Netherlands ISBN: 978-4020-9843-7

    Book  Google Scholar 

  • Rakhecha PR, Clark C, Lane S (1999) Revised estimates of one-day probable maximum precipitation (PMP) for India. Meteorol Appl 6:343–350

    Article  Google Scholar 

  • Robinson PJ (2000) Temporal changes in United States dew point temperatures. Int J Climatol 20:985–1002

    Article  Google Scholar 

  • Schreiner LC, Riedel JT (1978) Probable maximum precipitation estimates. United States East of the 105th Meridian (HMR No. 51). National Weather Service, National Oceanic and Atmospheric Administration, United States Department of Commerce, Washington, DC

    Google Scholar 

  • Shepherd JM, Pierce H, Negri AJ (2002) On rainfall modification by major urban areas: Observations from space-borne radar on TRMM. J Appl Meteorol 41:689–701

    Article  Google Scholar 

  • Shepherd JM, Carter WM, Manyin M, Messen D, Burian S (2010) The impact of urbanization on current and future coastal convection: a case study for Houston. Environ Plann 37:284–304

    Article  Google Scholar 

  • Stephens GL, L’Ecuyer T, Forbes R, Gettlemen A, Golaz J-C, Bodas-Salcedo A, Suzuki K, Gabriel P, Haynes J (2010) Dreary state of precipitation in global models. J Geophys Res 115:D24211. https://doi.org/10.1029/2010JD014532

    Article  Google Scholar 

  • Stratz SA, Hossain F (2014) Probable maximum precipitation in a changing climate: implications for dam design. ASCE Hydrol Eng https://doi.org/10.1061/(asce)he.1943-5584.0001021

    Article  Google Scholar 

  • Sun G, McNully SG, Myers JAM, Cohen EC (2008) Impact of multiple stresses on water demand and supply across the southeastern United States. J Am Water Resour Assoc, December, pp 1441–1457

    Article  Google Scholar 

  • Tan E (2010) Development of a methodology for probable maximum precipitation estimation over the American river watershed using the WRF Model. PhD Dissertation, University California-Davis (UMI 3404936)

    Google Scholar 

  • Taylor CM (2010) Feedbacks on convection from an African wetland. Geophys Res Lett 37:L05406. https://doi.org/10.1029/2009GL041652

    Article  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Climate Res 47:123–138

    Article  Google Scholar 

  • U.S. Bureau of Reclamations (USBR) (1987) Design of small dams. Water Resources Technical Publication, USA

    Google Scholar 

  • Vogel RM (2011) Hydromorphology. J Water Res Plann Manage (ASCE). https://doi.org/10.1061/(asce)wr.1943-5452.0000122

    Article  Google Scholar 

  • Vonder Haar TH, Bytheway J, Forsythe JM (2012) Weather and climate analyses using improved global water vapor observations. Geophys Res Lett https://doi.org/10.1029/2012gl052094

  • Vorosmarty C, Sahagian D (2000) Anthropogenic disturbance of the terrestrial water cycle. Bioscience 50(9):753–765

    Article  Google Scholar 

  • Vorosmarty CJ, Douglas EM, Green PA, Revenga C (2005) Geospatial indicators of emerging water stress: an application to Africa. Ambio-J Hum Environ (R Swed Acad Sci). 34(3)

    Article  Google Scholar 

  • Vorosmarty CJ, Conley D, Döll P, Harrison J, Letitre P, Mayorga E, Milliman J, Seitzinger S, van der Gun J, Wollheim W (2010) The earth’s natural water cycle, Chapter 10. UNESCO World Water Development Report

    Google Scholar 

  • Wang J-W, Wang K, Pielke RA, Lin JC, Matsui T (2008) Towards a robust test on North America warming trend and precipitable water content increase. Geophys Res Letts 35:L18804. https://doi.org/10.1029/2008GL034564

    Article  Google Scholar 

  • Woldemichael AT, Hossain F, Pielke Sr. RA, Beltrán-Przekurat A (2012) Understanding the impact of dam-triggered land-use/land-cover change on the modification of extreme precipitation. Water Resour Res 48:W09547. https://doi.org/10.1029/2011wr011684

  • Woldemichael AT, Hossain F, Pielke RA Sr (2014) Impacts of post-dam land-use/land-cover changes on modification of extreme precipitation in contrasting hydro-climate and terrain features. J Hydrometeorol 15(2):777–800. https://doi.org/10.1175/JHM-D-13-085.1

    Article  Google Scholar 

  • Yigzaw W, Hossain F, Kalyanapu A (2012) Impact of artificial reservoir size and land use/land cover patterns on estimation of probable maximum flood: the case of Folsom Dam on American river. Hydrol Eng, ASCE J. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000722

    Book  Google Scholar 

  • Yigzaw W, Hossain F, Kalyanapu A (2013) Comparison of PMP-driven PMFs with flood magnitudes from increasingly urbanized catchments: the case of American river watershed. Earth Interact (AGU-AMS-AAG). 17(8) https://doi.org/10.1175/2012ei000497.1

    Article  Google Scholar 

  • Zeng X, Pielke RA, Eykholt R (1993) Chaos theory and its applications to the atmosphere. Bull Am Meteor Soc 74:631–644

    Article  Google Scholar 

  • Zhao F, Shepherd JM (2011) Precipitation changes near Three Gorges Dam, China-Part I: a spatio-temporal validation analysis. J Hydrometeor. https://doi.org/10.1175/JHM-D-11-061.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, F. et al. (2020). Resilience of Water Management Infrastructure. In: Hossain, F. (eds) Resilience of Large Water Management Infrastructure. Springer, Cham. https://doi.org/10.1007/978-3-030-26432-1_1

Download citation

Publish with us

Policies and ethics