Abstract
We construct minimax optimal non-asymptotic confidence sets for low rank matrix recovery algorithms such as the Matrix Lasso or Dantzig selector. These are employed to devise adaptive sequential sampling procedures that guarantee recovery of the true matrix in Frobenius norm after a data-driven stopping time \(\hat n\) for the number of measurements that have to be taken. With high probability, this stopping time is minimax optimal. We detail applications to quantum tomography problems where measurements arise from Pauli observables. We also give a theoretical construction of a confidence set for the density matrix of a quantum state that has optimal diameter in nuclear norm. The non-asymptotic properties of our confidence sets are further investigated in a simulation study.
Keywords
- Low rank recovery
- Quantum information
- Confidence sets
- Sequential sampling
This is a preview of subscription content, access via your institution.
Buying options





Notes
- 1.
The term ‘tomography’ goes back to the use of Radon transforms in early schemes for estimating quantum states of electromagnetic fields [1, 27]. It has become synonymous with ‘quantum density matrix estimation’, even though current methods applied to quantum systems with a finite dimension d have no technical connection to classical tomographic reconstruction algorithms.
- 2.
A more insightful way of proving the first identity is to realise that \(\mathbb E\big (\chi _S(C^x)\big )\) is effectively a Fourier coefficient (over the group \(\mathbb {Z}_2^N\)) of the distribution function of the {−1, 1}N-valued random variable C x (e.g., [11]). Equation (18.21) is then nothing but an inverse Fourier transform.
- 3.
We note that quantum mechanics allows to design measurement devices that directly probe the observable of \(\sigma ^{y_1} \otimes \dots \otimes \sigma ^{y_N}\), without first measuring the spin of every particle and then computing a parity function. In fact, the ability to perform such correlation measurements is crucial for quantum error correction protocols [31]. For practical reasons these setups are used less commonly in tomography experiments, though.
References
L. Artiles, R. Gill, M. Guta, An invitation to quantum tomography. J. R. Stat. Soc. 67, 109 (2005)
K. Audenaert, S. Scheel, Quantum tomographic reconstruction with error bars: a Kalman filter approach. New J. Phys. 11(2), 023028 (2009)
P.J. Bickel, Y. Ritov, A.B. Tsybakov, Simultaneous analysis of lasso and Dantzig selector. Ann. Stat. 37(4), 1705–1732 (2009)
R. Blume-Kohout, Robust error bars for quantum tomography (2012). arXiv:1202.5270
P. Bühlmann, S. van de Geer, Statistics for High-Dimensional Data: Methods, Theory and Applications (Springer, Berlin, 2011)
E.J. Candès, Y. Plan, Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements. IEEE Trans. Inform. Theory 57(4), 2342–2359 (2011)
E.J. Candès, T. Tao, The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35(6), 2313–2351 (2007)
A. Carpentier, A. Kim, An iterative hard thresholding estimator for low rank matrix recovery with explicit limiting distribution (2015). arxiv preprint 1502.04654
A. Carpentier, O. Klopp, M. Löffler, R. Nickl, et al., Adaptive confidence sets for matrix completion. Bernoulli 24(4A), 2429–2460 (2018)
M. Christandl, R. Renner, Reliable quantum state tomography. Phys. Rev. Lett. 109, 120403 (2012)
R. De Wolf, A brief introduction to Fourier analysis on the Boolean cube. Theory Comput. Libr. Grad. Surv. 1, 1–20 (2008)
S.T. Flammia, D. Gross, Y.-K. Liu, J. Eisert, Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators. New J. Phys. 14(9), 095022 (2012)
E. Giné, R. Nickl, Confidence bands in density estimation. Ann. Stat. 38, 1122–1170 (2010)
E. Giné, R. Nickl, Mathematical Foundations of Infinite-Dimensional Statistical Models (Cambridge University Press, Cambridge, 2015)
D. Gross, Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inf. Theory 57(3), 1548–1566 (2011)
D. Gross, Y.-K. Liu, S.T. Flammia, S. Becker, J. Eisert, Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105(15), 150401 (2010)
M. Guta, T. Kypraios, I. Dryden, Rank-based model selection for multiple ions quantum tomography. New J. Phys. 14, 105002 (2012)
H. Haeffner, W. Haensel, C.F. Roos, J. Benhelm, D.C. al kar, M. Chwalla, T. Koerber, U.D. Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Scalable multi-particle entanglement of trapped ions. Nature 438, 643 (2005)
M. Hoffmann, R. Nickl, On adaptive inference and confidence bands. Ann. Stat. 39, 2382–2409 (2011)
A.S. Holevo, Statistical Structure of Quantum Theory (Springer, Berlin, 2001)
Y.I. Ingster, A.B. Tsybakov, N. Verzelen, Detection boundary in sparse regression. Electron. J. Stat. 4, 1476–1526 (2010)
A. Javanmard, A. Montanari, Confidence intervals and hypothesis testing for high-dimensional regression. J. Mach. Learn. Res. 15(1), 2869–2909 (2014)
A. Kalev, R.L. Kosut, I.H. Deutsch, Informationally complete measurements from compressed sensing methodology. arXiv:1502.00536
V. Koltchinskii, Von Neumann entropy penalization and low-rank matrix estimation. Ann. Stat. 39(6), 2936–2973 (2011)
V. Koltchinskii, K. Lounici, A.B. Tsybakov, Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion. Ann. Stat. 39(5), 2302–2329 (2011)
H. Leeb, B.M. Pötscher, Can one estimate the conditional distribution of post-model-selection estimators? Ann. Stat. 34(5), 2554–2591 (2006)
U. Leonhardt, Measuring the Quantum State of Light (Cambridge University Press, Cambridge, 2005)
Y.-K. Liu, Universal low-rank matrix recovery from Pauli measurements. Adv. Neural Inf. Process. Syst. 24, 1638–1646 (2011)
V. Mnih, C. Szepesvári, J.Y. Audibert, Empirical bernstein stopping, in Proceedings of the 25th International Conference on Machine Learning (ACM, New York, 2008), pp. 672–679
R. Nickl, S. van de Geer, Confidence sets in sparse regression. Ann. Stat. 41(6), 2852–2876 (2013)
M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)
A. Peres, Quantum Theory (Springer, Berlin, 1995)
B. Recht, M. Fazel, P.A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52, 471 (2010)
J. Shang, H.K. Ng, A. Sehrawat, X. Li, B.-G. Englert, Optimal error regions for quantum state estimation. New J. Phys. 15(12), 123026 (2013)
K. Temme, F. Verstraete, Quantum chi-squared and goodness of fit testing. J. Math. Phys. 56(1), 012202 (2015)
S. van de Geer, P. Bühlmann, Y. Ritov, R. Dezeure, On asymptotically optimal confidence regions and tests for high-dimensional models. Ann. Stat. 42(3), 1166–1202 (2014)
Acknowledgements
The work of A. Carpentier was done when she was in Cambridge and is partially supported by the Deutsche Forschungsgemeinschaft (DFG) Emmy Noether grant MuSyAD (CA 1488/1-1), by the DFG-314838170, GRK 2297 MathCoRe, by the DFG GRK 2433 DAEDALUS (384950143/GRK2433), and by the DFG CRC 1294 ‘Data Assimilation’, Project A03, and by the UFA-DFH through the French-German Doktorandenkolleg CDFA 01-18. D. Gross acknowledges support by the DFG (SPP1798 CoSIP), Germany’s Excellence Strategy—Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1—390534769, and the ARO under contract W911NF-14-1-0098 (Quantum Characterization, Verification, and Validation). J. Eisert was supported by the DFG, CRC 183, Project B01, by the DFG GRK DAEDALUS, the DFG SPP1798 CoSIP, the ERC, and the Templeton Foundation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Carpentier, A., Eisert, J., Gross, D., Nickl, R. (2019). Uncertainty Quantification for Matrix Compressed Sensing and Quantum Tomography Problems. In: Gozlan, N., Latała, R., Lounici, K., Madiman, M. (eds) High Dimensional Probability VIII. Progress in Probability, vol 74. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-26391-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-26391-1_18
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-030-26390-4
Online ISBN: 978-3-030-26391-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)