Skip to main content

Uncertainty Quantification for Matrix Compressed Sensing and Quantum Tomography Problems

Part of the Progress in Probability book series (PRPR,volume 74)

Abstract

We construct minimax optimal non-asymptotic confidence sets for low rank matrix recovery algorithms such as the Matrix Lasso or Dantzig selector. These are employed to devise adaptive sequential sampling procedures that guarantee recovery of the true matrix in Frobenius norm after a data-driven stopping time \(\hat n\) for the number of measurements that have to be taken. With high probability, this stopping time is minimax optimal. We detail applications to quantum tomography problems where measurements arise from Pauli observables. We also give a theoretical construction of a confidence set for the density matrix of a quantum state that has optimal diameter in nuclear norm. The non-asymptotic properties of our confidence sets are further investigated in a simulation study.

Keywords

  • Low rank recovery
  • Quantum information
  • Confidence sets
  • Sequential sampling

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-26391-1_18
  • Chapter length: 46 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-26391-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 18.1
Fig. 18.2
Fig. 18.3
Fig. 18.4
Fig. 18.5

Notes

  1. 1.

    The term ‘tomography’ goes back to the use of Radon transforms in early schemes for estimating quantum states of electromagnetic fields [1, 27]. It has become synonymous with ‘quantum density matrix estimation’, even though current methods applied to quantum systems with a finite dimension d have no technical connection to classical tomographic reconstruction algorithms.

  2. 2.

    A more insightful way of proving the first identity is to realise that \(\mathbb E\big (\chi _S(C^x)\big )\) is effectively a Fourier coefficient (over the group \(\mathbb {Z}_2^N\)) of the distribution function of the {−1, 1}N-valued random variable C x (e.g., [11]). Equation (18.21) is then nothing but an inverse Fourier transform.

  3. 3.

    We note that quantum mechanics allows to design measurement devices that directly probe the observable of \(\sigma ^{y_1} \otimes \dots \otimes \sigma ^{y_N}\), without first measuring the spin of every particle and then computing a parity function. In fact, the ability to perform such correlation measurements is crucial for quantum error correction protocols [31]. For practical reasons these setups are used less commonly in tomography experiments, though.

References

  1. L. Artiles, R. Gill, M. Guta, An invitation to quantum tomography. J. R. Stat. Soc. 67, 109 (2005)

    CrossRef  MathSciNet  Google Scholar 

  2. K. Audenaert, S. Scheel, Quantum tomographic reconstruction with error bars: a Kalman filter approach. New J. Phys. 11(2), 023028 (2009)

    CrossRef  Google Scholar 

  3. P.J. Bickel, Y. Ritov, A.B. Tsybakov, Simultaneous analysis of lasso and Dantzig selector. Ann. Stat. 37(4), 1705–1732 (2009)

    CrossRef  MathSciNet  Google Scholar 

  4. R. Blume-Kohout, Robust error bars for quantum tomography (2012). arXiv:1202.5270

    Google Scholar 

  5. P. Bühlmann, S. van de Geer, Statistics for High-Dimensional Data: Methods, Theory and Applications (Springer, Berlin, 2011)

    CrossRef  Google Scholar 

  6. E.J. Candès, Y. Plan, Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements. IEEE Trans. Inform. Theory 57(4), 2342–2359 (2011)

    CrossRef  MathSciNet  Google Scholar 

  7. E.J. Candès, T. Tao, The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35(6), 2313–2351 (2007)

    CrossRef  MathSciNet  Google Scholar 

  8. A. Carpentier, A. Kim, An iterative hard thresholding estimator for low rank matrix recovery with explicit limiting distribution (2015). arxiv preprint 1502.04654

    Google Scholar 

  9. A. Carpentier, O. Klopp, M. Löffler, R. Nickl, et al., Adaptive confidence sets for matrix completion. Bernoulli 24(4A), 2429–2460 (2018)

    CrossRef  MathSciNet  Google Scholar 

  10. M. Christandl, R. Renner, Reliable quantum state tomography. Phys. Rev. Lett. 109, 120403 (2012)

    CrossRef  Google Scholar 

  11. R. De Wolf, A brief introduction to Fourier analysis on the Boolean cube. Theory Comput. Libr. Grad. Surv. 1, 1–20 (2008)

    Google Scholar 

  12. S.T. Flammia, D. Gross, Y.-K. Liu, J. Eisert, Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators. New J. Phys. 14(9), 095022 (2012)

    CrossRef  Google Scholar 

  13. E. Giné, R. Nickl, Confidence bands in density estimation. Ann. Stat. 38, 1122–1170 (2010)

    CrossRef  MathSciNet  Google Scholar 

  14. E. Giné, R. Nickl, Mathematical Foundations of Infinite-Dimensional Statistical Models (Cambridge University Press, Cambridge, 2015)

    MATH  Google Scholar 

  15. D. Gross, Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inf. Theory 57(3), 1548–1566 (2011)

    CrossRef  MathSciNet  Google Scholar 

  16. D. Gross, Y.-K. Liu, S.T. Flammia, S. Becker, J. Eisert, Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105(15), 150401 (2010)

    Google Scholar 

  17. M. Guta, T. Kypraios, I. Dryden, Rank-based model selection for multiple ions quantum tomography. New J. Phys. 14, 105002 (2012)

    CrossRef  Google Scholar 

  18. H. Haeffner, W. Haensel, C.F. Roos, J. Benhelm, D.C. al kar, M. Chwalla, T. Koerber, U.D. Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Scalable multi-particle entanglement of trapped ions. Nature 438, 643 (2005)

    CrossRef  Google Scholar 

  19. M. Hoffmann, R. Nickl, On adaptive inference and confidence bands. Ann. Stat. 39, 2382–2409 (2011)

    CrossRef  MathSciNet  Google Scholar 

  20. A.S. Holevo, Statistical Structure of Quantum Theory (Springer, Berlin, 2001)

    CrossRef  Google Scholar 

  21. Y.I. Ingster, A.B. Tsybakov, N. Verzelen, Detection boundary in sparse regression. Electron. J. Stat. 4, 1476–1526 (2010)

    CrossRef  MathSciNet  Google Scholar 

  22. A. Javanmard, A. Montanari, Confidence intervals and hypothesis testing for high-dimensional regression. J. Mach. Learn. Res. 15(1), 2869–2909 (2014)

    MathSciNet  MATH  Google Scholar 

  23. A. Kalev, R.L. Kosut, I.H. Deutsch, Informationally complete measurements from compressed sensing methodology. arXiv:1502.00536

    Google Scholar 

  24. V. Koltchinskii, Von Neumann entropy penalization and low-rank matrix estimation. Ann. Stat. 39(6), 2936–2973 (2011)

    CrossRef  MathSciNet  Google Scholar 

  25. V. Koltchinskii, K. Lounici, A.B. Tsybakov, Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion. Ann. Stat. 39(5), 2302–2329 (2011)

    CrossRef  MathSciNet  Google Scholar 

  26. H. Leeb, B.M. Pötscher, Can one estimate the conditional distribution of post-model-selection estimators? Ann. Stat. 34(5), 2554–2591 (2006)

    CrossRef  MathSciNet  Google Scholar 

  27. U. Leonhardt, Measuring the Quantum State of Light (Cambridge University Press, Cambridge, 2005)

    MATH  Google Scholar 

  28. Y.-K. Liu, Universal low-rank matrix recovery from Pauli measurements. Adv. Neural Inf. Process. Syst. 24, 1638–1646 (2011)

    Google Scholar 

  29. V. Mnih, C. Szepesvári, J.Y. Audibert, Empirical bernstein stopping, in Proceedings of the 25th International Conference on Machine Learning (ACM, New York, 2008), pp. 672–679

    Google Scholar 

  30. R. Nickl, S. van de Geer, Confidence sets in sparse regression. Ann. Stat. 41(6), 2852–2876 (2013)

    CrossRef  MathSciNet  Google Scholar 

  31. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  32. A. Peres, Quantum Theory (Springer, Berlin, 1995)

    MATH  Google Scholar 

  33. B. Recht, M. Fazel, P.A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52, 471 (2010)

    CrossRef  MathSciNet  Google Scholar 

  34. J. Shang, H.K. Ng, A. Sehrawat, X. Li, B.-G. Englert, Optimal error regions for quantum state estimation. New J. Phys. 15(12), 123026 (2013)

    CrossRef  MathSciNet  Google Scholar 

  35. K. Temme, F. Verstraete, Quantum chi-squared and goodness of fit testing. J. Math. Phys. 56(1), 012202 (2015)

    CrossRef  MathSciNet  Google Scholar 

  36. S. van de Geer, P. Bühlmann, Y. Ritov, R. Dezeure, On asymptotically optimal confidence regions and tests for high-dimensional models. Ann. Stat. 42(3), 1166–1202 (2014)

    CrossRef  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of A. Carpentier was done when she was in Cambridge and is partially supported by the Deutsche Forschungsgemeinschaft (DFG) Emmy Noether grant MuSyAD (CA 1488/1-1), by the DFG-314838170, GRK 2297 MathCoRe, by the DFG GRK 2433 DAEDALUS (384950143/GRK2433), and by the DFG CRC 1294 ‘Data Assimilation’, Project A03, and by the UFA-DFH through the French-German Doktorandenkolleg CDFA 01-18. D. Gross acknowledges support by the DFG (SPP1798 CoSIP), Germany’s Excellence Strategy—Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1—390534769, and the ARO under contract W911NF-14-1-0098 (Quantum Characterization, Verification, and Validation). J. Eisert was supported by the DFG, CRC 183, Project B01, by the DFG GRK DAEDALUS, the DFG SPP1798 CoSIP, the ERC, and the Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Nickl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Carpentier, A., Eisert, J., Gross, D., Nickl, R. (2019). Uncertainty Quantification for Matrix Compressed Sensing and Quantum Tomography Problems. In: Gozlan, N., Latała, R., Lounici, K., Madiman, M. (eds) High Dimensional Probability VIII. Progress in Probability, vol 74. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-26391-1_18

Download citation