Skip to main content

Universality of Limiting Spectral Distribution Under Projective Criteria

  • Conference paper
  • First Online:
High Dimensional Probability VIII

Part of the book series: Progress in Probability ((PRPR,volume 74))

  • 566 Accesses

Abstract

This paper has double scope. In the first part we study the limiting empirical spectral distribution of a n × n symmetric matrix with dependent entries. For a class of generalized martingales we show that the asymptotic behavior of the empirical spectral distribution depends only on the covariance structure. Applications are given to strongly mixing random fields. The technique is based on a blend of blocking procedure, martingale techniques and multivariate Lindeberg’s method. This means that, for this class, the study of the limiting spectral distribution is reduced to the Gaussian case. The second part of the paper contains a survey of several old and new asymptotic results for the empirical spectral distribution for Gaussian processes, which can be combined with our universality results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Bai, J.W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices, 2nd edn. (Springer, New York, 2010)

    Book  Google Scholar 

  2. Z. Bai, W. Zhou, Large sample covariance matrices without independence structures in columns. Stat. Sin. 18, 425–442 (2008)

    MathSciNet  MATH  Google Scholar 

  3. M. Banna, F. Merlevède, M. Peligrad, On the limiting spectral distribution for a large class of symmetric random matrices with correlated entries. Stoch. Process. Appl. 125(7), 2700–2726 (2015)

    Article  MathSciNet  Google Scholar 

  4. A.K. Basu, C.C.Y. Dorea, On functional central limit theorem for stationary martingale random fields. Acta Math. Acad. Sci. Hungar. 33, 307–316 (1979)

    Article  MathSciNet  Google Scholar 

  5. S. Bernstein, Sur l’extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes. Math. Ann. 97(1), 1–59 (1927)

    Article  MathSciNet  Google Scholar 

  6. S.G. Bobkov, F. Götze, A.N. Tikhomirov, On concentration of empirical measures and convergence to the semi-circle law. J. Theor. Probab. 23, 792–823 (2010)

    Article  MathSciNet  Google Scholar 

  7. A. Boutet de Monvel, A. Khorunzhy, On the norm and eigenvalue distribution of large random matrices. Ann. Probab. 27, 913–944 (1999)

    Article  MathSciNet  Google Scholar 

  8. A. Boutet de Monvel, A. Khorunzhy, V. Vasilchuk, Limiting eigenvalue distribution of random matrices with correlated entries. Markov Process. Related Fields 2, 607–636 (1996)

    MathSciNet  MATH  Google Scholar 

  9. R. Bradley, Introduction to Strong Mixing Conditions, vols. 1, 2, 3 (Kendrick Press, Heber City, 2007)

    Google Scholar 

  10. A. Chakrabarty, R.S. Hazra, D. Sarkar, From random matrices to long range dependence. Random Matrices Theory Appl. 5(2), 52 (2016)

    Google Scholar 

  11. S. Chatterjee, A generalization of the Lindeberg principle. Ann. Probab. 34, 2061–2076 (2006)

    Article  MathSciNet  Google Scholar 

  12. R. Davis, O. Pfaffel, R. Stelzer, Limit theory for the largest eigenvalues of sample covariance matrices with heavy-tails. Stoch. Process. Appl. 124(1), 18–50 (2014)

    Article  MathSciNet  Google Scholar 

  13. J. Dedecker, A central limit theorem for stationary random fields. Probab. Theory Relat. Fields 110, 397–426 (1998)

    Article  MathSciNet  Google Scholar 

  14. J. Dedecker, Exponential inequalities and functional central limit theorem for random fields. ESAIM Probab. Stat. 5, 77–104 (2001)

    Article  MathSciNet  Google Scholar 

  15. R.L. Dobrushin, S.B. Shlosman, Constructive criterion for the uniqueness of Gibbs field, in Statistical Physics and Dynamical Systems, (Köszeg, 1984). Progress in Physics, vol. 10 (Birkhäuser Boston, Boston, 1985), pp. 347–370

    Chapter  Google Scholar 

  16. C. Dombry, F. Eyi-Minko, Strong mixing properties of max-infinitely divisible random fields. Stochastic Process. Appl. 122(11), 3790–3811 (2012)

    Article  MathSciNet  Google Scholar 

  17. P. Doukhan, Mixing: Properties and Examples (Springer, Berlin, 1984)

    MATH  Google Scholar 

  18. M. El Machkouri, D. Volný, W.B. Wu, A central limit theorem for stationary random fields. Stoch. Process. Appl. 123(1), 1–14 (2013)

    Article  MathSciNet  Google Scholar 

  19. V.L. Girko, Theory of Random Determinants.Translated from the Russian. Mathematics and Its Applications (Soviet Series), vol. 45 (Kluwer Academic Publishers Group, Dordrecht, 1990)

    Google Scholar 

  20. V.L. Girko, Statistical Analysis of Observations of Increasing Dimension, vol. 28 (Springer Science & Business Media, Berlin, 1995)

    Google Scholar 

  21. F. Götze, A. Naumov, A. Tikhomirov, Semicircle law for a class of random matrixes with dependent entries (2012). arXiv:math/0702386v1

    Google Scholar 

  22. W. Hachem, P. Loubaton, J. Najim, The empirical eigenvalue distribution of a Gram matrix: from independence to stationarity. Markov Process. Related Fields 11, 629–648 (2005)

    MathSciNet  MATH  Google Scholar 

  23. A. Khorunzhy, L. Pastur, On the eigenvalue distribution of the deformed Wigner ensemble of random matrices, in Spectral Operator Theory and Related Topics, ed. by V.A. Marchenko. Advances in Soviet Mathematics, vol. 19 (American Mathematical Society, Providence, 1994), pp. 97–127

    Google Scholar 

  24. E. Laroche, Hypercontractivité pour des systèmes de spins de portée infinie. Probab. Theory Relat. Fields. 101, 89–132 (1995)

    Article  MathSciNet  Google Scholar 

  25. V. Marchenko, L. Pastur, Distribution of eigenvalues for some sets of random matrices. Mat. Sb. 72, 507–536 (1967)

    MathSciNet  Google Scholar 

  26. F. Merlevède, M. Peligrad, On the weak invariance principle for stationary sequences under projective criteria. J. Theor. Probab. 19(3), 647–689 (2006)

    Article  MathSciNet  Google Scholar 

  27. F. Merlevède, M. Peligrad, On the empirical spectral distribution for matrices with long memory and independent rows. Stoch. Process. Appl. 126(9), 2734–2760 (2016)

    Article  MathSciNet  Google Scholar 

  28. F. Merlevède, C. Peligrad, M. Peligrad, On the universality of spectral limit for random matrices with martingale differences entries. Random Matrices Theor. Appl. 4(1), 33 (2015)

    Google Scholar 

  29. F. Merlevède, M. Peligrad, S. Utev, Functional Gaussian Approximation for Dependent Structures. Oxford Studies in Probability, vol. 6 (Oxford University Press, Oxford, 2019)

    Google Scholar 

  30. A. Pajor, L. Pastur, On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution. Studia Math. 195(1), 11–29 (2009)

    Article  MathSciNet  Google Scholar 

  31. G. Pan, J. Gao, Y. Yang, Testing independence among a large number of high-dimensional random vectors. J. Am. Stat. Assoc. 109, 600–612 (2014)

    Article  MathSciNet  Google Scholar 

  32. L. Pastur, On the spectrum of random matrices. Teor. Mat. Fiz. 10, 102–112 (1972)

    Article  MathSciNet  Google Scholar 

  33. L. Pastur, M. Shcherbina, Eigenvalue Distribution of Large Random Matrices. Mathematical Surveys and Monographs, vol. 171 (American Mathematical Society, Providence, 2011)

    Google Scholar 

  34. C. Peligrad, M. Peligrad, The limiting spectral distribution in terms of spectral density. Random Matrices Theory Appl. 5(1), 19 (2016)

    Google Scholar 

  35. O. Pfaffel, E. Schlemm, Eigenvalue distribution of large sample covariance matrices of linear processes. Probab. Math. Stat. 31, 313–329 (2011)

    MathSciNet  MATH  Google Scholar 

  36. R. Rashidi Far, T. Oraby, W. Bryc, R. Speicher, On slow-fading MIMO systems with nonseparable correlation. IEEE Trans. Inform. Theory 54, 544–553 (2008)

    Article  MathSciNet  Google Scholar 

  37. E. Rio, Asymptotic Theory of Weakly Dependent Random Processes. Probability Theory and Stochastic Modelling, vol. 80 (Springer, Berlin, 2017)

    Chapter  Google Scholar 

  38. M. Rosenblatt, A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci. U. S. A. 42, 43–47 (1956)

    Article  MathSciNet  Google Scholar 

  39. M. Rosenblatt, A comment on a conjecture of N. Wiener. Statist. Probab. Lett. 79, 347–348 (2009)

    Article  MathSciNet  Google Scholar 

  40. Z. Sasvári, Multivariate Characteristic and Correlation Functions. De Gruyter Studies in Mathematics, vol. 50 (Walter de Gruyter & Co., Berlin, 2013), pp. x+366

    Google Scholar 

  41. J.W. Silverstein, Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices. J. Multivar. Anal. 55, 331–339 (1995)

    Article  MathSciNet  Google Scholar 

  42. J.W. Silverstein, Z.D. Bai, On the empirical distribution of eigenvalues of a class of large dimensional random matrices. J. Multivar. Anal. 54, 175–192 (1995)

    Article  MathSciNet  Google Scholar 

  43. T. Tao, Topics in Random Matrix Theory. Graduate Studies in Mathematics, vol. 132 (American Mathematical Society, Providence 2012)

    Google Scholar 

  44. C. Tone, Central limit theorems for Hilbert-space valued random fields satisfying a strong mixing condition. ALEA Lat. Am. J. Probab. Math. Stat. 8, 77–94 (2011)

    MathSciNet  MATH  Google Scholar 

  45. E.P. Wigner, On the distribution of the roots of certain symmetric matrices. Ann. Math. 67, 325–327 (1958)

    Article  MathSciNet  Google Scholar 

  46. J. Yao, A note on a Mar ̆cenko-Pastur type theorem for time series. Statist. Probab. Lett. 82, 22–28 (2012)

    Article  MathSciNet  Google Scholar 

  47. P. Yaskov, A short proof of the Marchenko-Pastur theorem. C. R. Math. Acad. Sci. Paris 354(3), 319–322 (2016)

    Article  MathSciNet  Google Scholar 

  48. P. Yaskov, Necessary and sufficient conditions for the Marchenko-Pastur theorem. Electron. Commun. Probab. 21(73), 1–8 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Y.Q. Yin, Limiting spectral distribution for a class of random matrices. J. Multivar. Anal. 20, 50–68 (1986)

    Article  MathSciNet  Google Scholar 

  50. Y.Q. Yin, P.R. Krishnaiah, A limit theorem for the eigenvalues of product of two random matrices. J. Multivar. Anal. 13(4), 489–507 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper was supported in part by a Charles Phelps Taft Memorial Fund grant, and the NSF grant DMS-1811373. We are grateful to the referee for carefully reading our manuscript and for helpful comments that improved its presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Merlevède .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Merlevède, F., Peligrad, M. (2019). Universality of Limiting Spectral Distribution Under Projective Criteria. In: Gozlan, N., Latała, R., Lounici, K., Madiman, M. (eds) High Dimensional Probability VIII. Progress in Probability, vol 74. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-26391-1_13

Download citation

Publish with us

Policies and ethics