Skip to main content

Optical Coherence Tomography Angiography in Neurology and Neuro-Ophthalmology

  • Chapter
  • First Online:

Abstract

Optical coherence tomography angiography (OCT-A) is a recent advancement in retinal imaging that uses high-speed OCT and advanced processing algorithms to generate en face angiographic images of the retinal and choroidal microcirculation, utilizing the non-invasive motion-contrast of intra-luminal erythrocyte flow. This chapter offers a review of the recent translational and clinical applications of OCT-A in the fields of neurology and neuro-ophthalmology, focusing on non-glaucomatous optic neuropathies and other central neurological disorders.

In Alzheimer’s dementia and Parkinson’s disease, retinal microvascular loss detected by OCT-A may be a sensitive indicator of progressive vascular impairment that precedes neuronal death. OCT-A findings in multiple sclerosis suggest vascular involvement in the inflammatory disease process, leading to ischemia of neural tissues. Migraine with aura patients show a decreased retinal perfusion bilaterally with OCT-A, implying a systemic vascular involvement that may explain their increased risk for cardiovascular disease.

OCT-A studies on non-arteritic anterior ischemic optic neuropathy suggest that peripapillary microvascular attenuation is secondary to an initial transient ischemic insult in the short posterior ciliary arteries, causing optic nerve edema that propogates anteriorly, in turn compressing the retinal microvasculature. OCT-A has allowed insight into the suspected vasculopathy associated with Leber’s hereditary optic neuropathy, which may be due to mitochondrial dysfunction influencing endothelial cell and vascular smooth muscle viability. Superficial optic nerve head drusen may cause focal areas of poor superficial retinal perfusion as detected by OCT-A, which may in turn lead to nerve fiber ischemia and rarefaction.

OCT-A shows promise in becoming an important tool for researchers and clinicians in their multimodal approach in detecting pathological changes, monitoring disease progression and evaluating response to treatment in these disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55.

    Article  Google Scholar 

  2. Bulut M, Kurtuluş F, Gözkaya O, Erol MK, Cengiz A, Akıdan M, et al. Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia. Br J Ophthalmol. 2018;102(2):233–7.

    Article  Google Scholar 

  3. O’Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP. Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings. JAMA Ophthalmol. 2018;136(11):1242–8.

    Article  Google Scholar 

  4. Jiang H, Wei Y, Shi Y, Wright CB, Sun X, Gregori G, et al. Altered macular microvasculature in mild cognitive impairment and Alzheimer disease. J Neuroophthalmol. 2018;38(3):292–8.

    Article  Google Scholar 

  5. Kwapong WR, Ye H, Peng C, Zhuang X, Wang J, Shen M, et al. Retinal microvascular impairment in the early stages of Parkinson’s disease. Invest Ophthalmol Vis Sci. 2018;59(10):4115–22.

    Article  CAS  Google Scholar 

  6. Lanzillo R, Cennamo G, Criscuolo C, Carotenuto A, Velotti N, Sparnelli F, et al. Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis. Mult Scler. 2018;24(13):1706–14.

    Article  Google Scholar 

  7. Lanzillo R, Cennamo G, Moccia M, Criscuolo C, Carotenuto A, Frattaruolo N, et al. Retinal vascular density in multiple sclerosis: a 1-year follow-up. Eur J Neurol. 2019;26:198–201.

    Article  CAS  Google Scholar 

  8. Feucht N, Maier M, Lepennetier G, Pettenkofer M, Wetzlmair C, Daltrozzo T, et al. Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis. Mult Scler. 2018:1352458517750009.

    Google Scholar 

  9. Spain RI, Liu L, Zhang X, Jia Y, Tan O, Bourdette D, et al. Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis. Br J Ophthalmol. 2018;102(4):520–4.

    PubMed  Google Scholar 

  10. Wang X, Jia Y, Spain R, Potsaid B, Liu JJ, Baumann B, et al. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol. 2014;98(10):1368–73.

    Article  Google Scholar 

  11. Chang MY, Phasukkijwatana N, Garrity S, Pineles SL, Rahimi M, Sarraf D, et al. Foveal and peripapillary vascular decrement in migraine with aura demonstrated by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2017;58(12):5477–84.

    Article  CAS  Google Scholar 

  12. Barash AT, Pinhas MJ, Rosen A, Richard B. Macular and peripapillary retinal perfusion changes during migraine with aura detected by optical coherence tomography angiography. Paper presentation at the American Society of Retina Specialists, Chicago, July 2019.

    Google Scholar 

  13. Yilmaz I, Ocak OB, Yilmaz BS, Inal A, Gokyigit B, Taskapili M. Comparison of quantitative measurement of foveal avascular zone and macular vessel density in eyes of children with amblyopia and healthy controls: an optical coherence tomography angiography study. J AAPOS. 2017;21(3):224–8.

    Article  Google Scholar 

  14. Lonngi M, Velez FG, Tsui I, Davila JP, Rahimi M, Chan C, et al. Spectral-domain optical coherence tomographic angiography in children with amblyopia. JAMA Ophthalmol. 2017;135(10):1086–91.

    Article  Google Scholar 

  15. Sobral I, Rodrigues TM, Soares M, Seara M, Monteiro M, Paiva C, et al. OCT angiography findings in children with amblyopia. J AAPOS. 2018;22(4):286–9.e2.

    Google Scholar 

  16. Guo L, Tao J, Xia F, Yang Z, Ma X, Hua R. In vivo optical imaging of amblyopia: digital subtraction autofluorescence and split-spectrum amplitude-decorrelation angiography. Lasers Surg Med. 2016;48(7):660–7.

    Article  Google Scholar 

  17. Demirayak B, Vural A, Onur IU, Kaya FS, Yigit FU. Analysis of macular vessel density and foveal avascular zone using spectral-domain optical coherence tomography angiography in children with amblyopia. J Pediatr Ophthalmol Strabismus. 2018;56:1–5.

    Google Scholar 

  18. Ling JW, Yin X, Lu QY, Chen YY, Lu PR. Optical coherence tomography angiography of optic disc perfusion in non-arteritic anterior ischemic optic neuropathy. Int J Ophthalmol. 2017;10(9):1402–6.

    PubMed  PubMed Central  Google Scholar 

  19. Wright Mayes E, Cole ED, Dang S, Novais EA, Vuong L, Mendoza-Santiesteban C, et al. Optical coherence tomography angiography in nonarteritic anterior ischemic optic neuropathy. J Neuroophthalmol. 2017;37:358–64.

    Google Scholar 

  20. Song Y, Min JY, Mao L, Gong YY. Microvasculature dropout detected by the optical coherence tomography angiography in nonarteritic anterior ischemic optic neuropathy. Lasers Surg Med. 2018;50(3):194–201.

    Article  Google Scholar 

  21. Sharma S, Ang M, Najjar RP, Sng C, Cheung CY, Rukmini AV, et al. Optical coherence tomography angiography in acute non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol. 2017;101(8):1045–51.

    Article  Google Scholar 

  22. Liu CH, Kao LY, Sun MH, Wu WC, Chen HS. Retinal vessel density in optical coherence tomography angiography in optic atrophy after nonarteritic anterior ischemic optic neuropathy. J Ophthalmol. 2017;2017:9632647.

    PubMed  PubMed Central  Google Scholar 

  23. Augstburger E, Zéboulon P, Keilani C, Baudouin C, Labbé A. Retinal and choroidal microvasculature in nonarteritic anterior ischemic optic neuropathy: an optical coherence tomography angiography study. Invest Ophthalmol Vis Sci. 2018;59(2):870–7.

    Article  Google Scholar 

  24. Gandhi U, Chhablani J, Badakere A, Kekunnaya R, Rasheed MA, Goud A, et al. Optical coherence tomography angiography in acute unilateral nonarteritic anterior ischemic optic neuropathy: a comparison with the fellow eye and with eyes with papilledema. Indian J Ophthalmol. 2018;66(8):1144–8.

    Article  Google Scholar 

  25. Rebolleda G, Díez-Álvarez L, García Marín Y, de Juan V, Muñoz-Negrete FJ. Reduction of peripapillary vessel density by optical coherence tomography angiography from the acute to the atrophic stage in non-arteritic anterior ischaemic optic neuropathy. Ophthalmologica. 2018;240(4):191–9.

    Article  Google Scholar 

  26. Borrelli E, Balasubramanian S, Triolo G, Barboni P, Sadda SR, Sadun AA. Topographic macular microvascular changes and correlation with visual loss in chronic Leber hereditary optic neuropathy. Am J Ophthalmol. 2018;192:217–28.

    Article  Google Scholar 

  27. Balducci N, Cascavilla ML, Ciardella A, La Morgia C, Triolo G, Parisi V, et al. Peripapillary vessel density changes in Leber’s hereditary optic neuropathy: a new biomarker. Clin Exp Ophthalmol. 2018;46:1055–62.

    Article  Google Scholar 

  28. Fard MA, Jalili J, Sahraiyan A, Khojasteh H, Hejazi M, Ritch R, et al. Optical coherence tomography angiography in optic disc swelling. Am J Ophthalmol. 2018;191:116–23.

    Article  Google Scholar 

  29. Flores-Reyes E, Hoskens K, Mansouri K. Optic nerve head drusen: imaging using optical coherence tomography angiography. J Glaucoma. 2017;26(9):845–9.

    Article  Google Scholar 

  30. Gaier ED, Rizzo JF, Miller JB, Cestari DM. Focal capillary dropout associated with optic disc drusen using optical coherence tomographic angiography. J Neuroophthalmol. 2017;37(4):405–10.

    Article  Google Scholar 

  31. Ye L, Zhou SS, Yang WL, Bao J, Jiang N, Min YL, et al. Retinal microvasculature alteration in active thyroid-associated ophthalmopathy. Endocr Pract. 2018;24(7):658–67.

    Article  Google Scholar 

  32. Lewis KT, Bullock JR, Drumright RT, Olsen MJ, Penman AD. Changes in peripapillary blood vessel density in Graves’ orbitopathy after orbital decompression surgery as measured by optical coherence tomography angiography. Orbit. 2019;38:87–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pinhas, A. et al. (2020). Optical Coherence Tomography Angiography in Neurology and Neuro-Ophthalmology. In: Grzybowski, A., Barboni, P. (eds) OCT and Imaging in Central Nervous System Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-26269-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26269-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26268-6

  • Online ISBN: 978-3-030-26269-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics