Skip to main content

Pediatric Neuro-Ophthalmology and OCT

  • Chapter
  • First Online:
OCT and Imaging in Central Nervous System Diseases

Abstract

Embryology and neurodevelopment of the eyes are crucial for a better understanding of neuro-ophthalmic disorders. The field of pediatric neuro-ophthalmology has burgeoned over the past decade due to the more available diagnostic and therapeutic tools. This multidisciplinary field requires the collaborative work of a geneticist, pediatric ophthalmologist, pediatric ophthalmic-oncologists with coordination of a pediatric neuro-ophthalmologist.

Embryology and early development of eyes as part of the brain can help us to understand developmental, degenerative and ocular pathology in ophthalmology better. Increasing evidence suggests that the changes of the retinal structure and microvasculature are correlated with neurodegenerative and cerebrovascular lesions, which in turn supports the view that the retina may serve as a window to the brain.

Many problem-solving methods for diagnostics of disorders of the central nervous system in the childhood period need general anesthesia, which is a very stressful, time-consuming and high costly procedure. However, the introduction of low-cost diagnostic ophthalmic instruments has facilitated the use of retinal imaging for the detection and management of neurodevelopmental disorders in the infanthood period.

In this chapter, we will give an overview of embryology, ocular and neurological development, as well as an overview of the use of Optical Coherence Tomography in Neonatology and Pediatric Neuro-ophthalmology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuhrmann S. Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol. 2010;93:61–84. https://doi.org/10.1016/B978-0-12-385044-7.00003-5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fitzpatrick DR, van Heyningen V. Developmental eye disorders. Curr Opin Genet Dev. 2005;15:348–53. https://doi.org/10.1016/j.gde.2005.04.013.

    Article  CAS  PubMed  Google Scholar 

  3. Wright K, Spiegel P. Pediatric ophthalmology and strabismus. 2nd ed. New York: Springer; 2003.

    Book  Google Scholar 

  4. Lovicu F, McAvoy J, de Iongh R. Understanding the role of growth factors in embryonic development: insights from the lens. Philos Trans R Soc Lond Ser B Biol Sci. 2011;366:1204–18. https://doi.org/10.1098/rstb.2010.0339.

    Article  CAS  Google Scholar 

  5. Ponsioen TL, Hooymans JM, Los LI. Remodeling of the human vitreous and vitreoretinal interface – a dynamic process. Prog Retin Eye Res. 2010;29:580–95. https://doi.org/10.1016/j.preteyeres.2010.07.001.

    Article  PubMed  Google Scholar 

  6. Gunhaga L. The lens: a classical model of embryonic induction providing new insights into cell determination in early development. Philos Trans R Soc Lond Ser B Biol Sci. 2011;366:1193–203. https://doi.org/10.1098/rstb.2010.0175.

    Article  Google Scholar 

  7. Booij JC, Baas DC, Beisekeeva J, Gorgel TG, Bergem AA. The dynamic nature of Bruch’s membrane. Prog Retin Eye Res. 2010;29:1–18. https://doi.org/10.1016/j.preteyeres.2009.08.003.

    Article  CAS  Google Scholar 

  8. Provis M, Penfold PL, Cornish EE, Sandercoe TM, Madigan MC. Anatomy and development of the macula: specialization and the vulnerability to macular degeneration. Clin Exp Optom. 2005;88:269–81.

    Article  Google Scholar 

  9. Hendrickson A, Bumsted-O’Brien K, Natoli R, Ramamurthy V, Possin D, Provis J. Rod photoreceptor differentiation in fetal and infant human retina. Exp Eye Res. 2008;87:415–26. https://doi.org/10.1016/j.exer.2008.07.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morcillo J, Martínez-Morales JR, Trousse F, Fermin Y, Sowden JC, Bovolenta P. Proper patterning of the optic fissure requires the sequential activity of BMP7 and SHH. Development. 2006;133:3179–90. https://doi.org/10.1242/dev.02493.

    Article  CAS  PubMed  Google Scholar 

  11. Mann F, Harris WA, Holt CE. New views on retinal axon development: a navigation guide. Int J Dev Biol. 2004;48:957–64. https://doi.org/10.1387/ijdb.041899fm.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Irving C, Malhas A, Guthrie S, Mason I. Establishing the trochlear motor axon trajectory: role of the isthmic organizer and Fgf8. Development. 2002;129:5389–98.

    Article  CAS  Google Scholar 

  13. Nugent AA, Kolpak AL, Engle EC. Human disorders of axon guidance. Curr Opin Neurobiol. 2012;22:837–43. https://doi.org/10.1016/j.conb.2012.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zacharias AL, Lewandoski M, Rudnicki MA, Gage PJ. Pitx2 is an upstream activator of extraocular myogenesis and survival. Dev Biol. 2011;349:395–405. https://doi.org/10.1016/j.ydbio.2010.10.028.

    Article  CAS  PubMed  Google Scholar 

  15. Saint-Geniez M, D’Amore PA. Development and pathology of the hyaloid, choroidal and retinal vasculature. Int J Dev Biol. 2004;48:1045–58. https://doi.org/10.1387/ijdb.041895ms.

    Article  PubMed  Google Scholar 

  16. Hughes S, Yang H, Ling C. Vascularisation of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest Ophthalmol Vis Sci. 2000;41:1217–28.

    CAS  PubMed  Google Scholar 

  17. Das A, McGuire PG. Retinal and choroidal angiogenesis: pathophysiology and strategies for inhibition. Prog Retin Eye Res. 2003;22:721–48.

    Article  CAS  Google Scholar 

  18. Zhao S, Overbeek PA. Regulation of choroid development by retinal pigment epithelium. Mol Vis. 2001;7:277–82.

    CAS  PubMed  Google Scholar 

  19. Anand-Apte B, Hollyfield JG. Developmental anatomy of the retinal and choroidal vasculature. Cleveland: Elsevier; 2010.

    Book  Google Scholar 

  20. Jakobiec FA. Ocular anatomy, embryology, and teratology. Philadelphia: Harper and Row; 1982.

    Google Scholar 

  21. Provis JM, Hendrickson AE. The foveal avascular region of developing human retina. Arch Ophthalmol. 2008;126:507–11. https://doi.org/10.1001/archopht.126.4.507.

    Article  CAS  PubMed  Google Scholar 

  22. Fruttiger M. Development of the retinal vasculature. Angiogenesis. 2007;10:77–88. https://doi.org/10.1007/s10456-007-9065-1.

    Article  PubMed  Google Scholar 

  23. Penn J, editor. Retinal and choroidal angiogenesis. Dordrecht: Springer; 2008.

    Google Scholar 

  24. Chan-Ling T, McLeod DS, Hughes S, Baxter L, Chu Y, Hasegawa T, et al. Astrocyte/endothelial cell relationships during human retinal vascular development. Invest Ophthalmol Vis Sci. 2004;45:2020–32.

    Article  Google Scholar 

  25. Jonssen AM, Gardner TW, Kirchof B, Ryan SJ. Retinal vascular disease. Cambridge: Cambridge University Press; 2006.

    Google Scholar 

  26. Hungerford J, Stewart A, Hope P. Ocular sequelae of preterm birth and their relation to ultrasound evidence of cerebral damage. Br J Ophthalmol. 1986;70:463–8.

    Article  CAS  Google Scholar 

  27. Msall ME, Phelps DL, DiGaudio KM, Dobson V, Tung B, McClead RE, et al. Severity of neonatal retinopathy of prematurity is predictive of neurodevelopmental functional outcome at age 5.5 years. Behalf of the Cryotherapy for Retinopathy of Prematurity Cooperative Group. Pediatrics. 2000;106:998–1005.

    Article  CAS  Google Scholar 

  28. Cooke RW, Foulder-Hughes L, Newsham D, Clarke D. Ophthalmic impairment at 7 years of age in children born very preterm. Arch Dis Child Fetal Neonatal Ed. 2004;89:F249–53.

    Article  CAS  Google Scholar 

  29. Stephenson T, Wright S, O’Connor A, Fielder A, Johnson A, Ratib S, et al. Children born weighing less than 1701 g: visual and cognitive outcomes at 11–14 years. Arch Dis Child Fetal Neonatal Ed. 2007;92:F265–70. https://doi.org/10.1136/adc.2006.104000.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Maldonado RS, Izatt JA, Sarin N, Wallace DK, Freedman S, Cotten CM, et al. Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children. Invest Ophthalmol Vis Sci. 2010;51:2678–85. https://doi.org/10.1167/iovs.09-4403.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Maldonado RS, O’Connell RV, Sarin N, Freedman SF, Wallace DK, Cotten CM, et al. Dynamics of human foveal development after premature birth. Ophthalmology. 2011;118:2315–25. https://doi.org/10.1016/j.ophtha.2011.05.028.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lee H, Proudlock F, Gottlob I. Is handheld optical coherence tomography reliable in infants and young children with and without nystagmus? Invest Ophthalmol Vis Sci. 2013;54:8152–9. https://doi.org/10.1167/iovs.13-13230.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Avery RA, Cnaan A, Schuman JS, Chen CL, Glaug NC, Packer RJ, et al. Intra- and inter-visit reproducibility of ganglion cell-inner plexiform layer measurements using handheld optical coherence tomography in children with optic pathway gliomas. Am J Ophthalmol. 2014;158:916–23. https://doi.org/10.1016/j.ajo.2014.07.029.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gerth C, Zawadzki RJ, Héon E, Werner JS. High-resolution retinal imaging in young children using a handheld scanner and Fourier-domain optical coherence tomography. J AAPOS. 2009;13:72–4. https://doi.org/10.1016/j.jaapos.2008.09.001.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Maldonado RS, Toth CA. Optical coherence tomography in retinopathy of prematurity: looking beyond the vessels. Clin Perinatol. 2013;40:271–96. https://doi.org/10.1016/j.clp.2013.02.007.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rootman DB, Gonzalez E, Mallipatna A, Vandenhoven C, Hampton L, Dimaras H, et al. Hand-held high-resolution spectral domain optical coherence tomography in retinoblastoma: clinical and morphologic considerations. Br J Ophthalmol. 2013;97:59–65. https://doi.org/10.1136/bjophthalmol-2012-302133.

    Article  PubMed  Google Scholar 

  37. Vajzovic L, Hendrickson AE, O’Connell RV, Clark LA, Tran-Viet D, Possin D, et al. Maturation of the human fovea: correlation of spectral-domain optical coherence tomography findings with histology. Am J Ophthalmol. 2012;154:779–89.e2. https://doi.org/10.1016/j.ajo.2012.05.004

  38. Lee H, Purohit R, Patel A, Papageorgiou E, Sheth V, Maconachie G, et al. In vivo foveal development using optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56:4537–45. https://doi.org/10.1167/iovs.15-16542.

    Article  PubMed  Google Scholar 

  39. Hendrickson AE, Yuodelis C. The morphological development of the human fovea. Ophthalmology. 1984;91:603–12.

    Article  CAS  Google Scholar 

  40. Oros A. Retinopathy of prematurity. Belgrade: Endowment Andrejevic; 2003.

    Google Scholar 

  41. Phelps DL. Retinopathy of prematurity: history, classification, and pathophysiology. NeoReviews. 2001;2:e153–66. https://doi.org/10.1542/neo.2-7-e153.

    Article  Google Scholar 

  42. Terry TL. Extreme prematurity and fibroblastic overgrowth of persistent vascular sheath behind each crystalline lens. Preliminary report. Am J Ophthalmol. 1942;25:203–4.

    Article  Google Scholar 

  43. Friling R, Weinberger D, Kremer I, Avisar R, Sirota L, Snir M. Keratometry measurements in preterm and full-term newborn infants. Br J Ophthalmol. 2004;88:8–10.

    Article  CAS  Google Scholar 

  44. Cook A, White S, Batterbury M, Clark D. Ocular growth and refractive error development in premature infants with or without retinopathy of prematurity. Invest Ophthalmol Vis Sci. 2008;49:5199–207. https://doi.org/10.1167/iovs.06-0114.

    Article  PubMed  Google Scholar 

  45. Gordon RA, Donzis PB. Refractive development of the human eye. Arch Ophthalmol. 1985;103:785–9. https://doi.org/10.1001/archopht.1985.01050060045020.

    Article  CAS  PubMed  Google Scholar 

  46. Harvey PS, King RA, Summers CG. Spectrum of foveal development in albinism detected with optical coherence tomography. J AAPOS. 2006;10:237–42. https://doi.org/10.1016/j.jaapos.2006.01.008.

    Article  PubMed  Google Scholar 

  47. Wallman J, Winawer J. Homeostasis of eye growth and the question of myopia. Neuron. 2004;43(4):447–68. https://doi.org/10.1016/j.neuron.2004.08.008.

    Article  CAS  PubMed  Google Scholar 

  48. Isenberg S, Del Signore M, Chen A, Wei J, Christenson P. Corneal topography of neonates and infants. Arch Ophthalmol. 2004;122:1767–71. https://doi.org/10.1001/archopht.122.12.1767.

    Article  PubMed  Google Scholar 

  49. Inagaki Y. The rapid change of corneal curvature in the neonatal period and infancy. Arch Ophthalmol. 1986;104:1026–7.

    Article  CAS  Google Scholar 

  50. Mohindra I, Held R, Gwiazda J, Brill S. Astigmatism in infants. Science. 1978;202:329–31.

    Article  CAS  Google Scholar 

  51. Howland HC, Atkinson J, Braddock O, French J. Infant astigmatism measured by photorefraction. Science. 1978;202:331–3.

    Article  CAS  Google Scholar 

  52. Wang J, Spencer R, Leffler JN, Birch EE. Characteristics of peripapillary retinal nerve fiber layer in preterm children. Am J Ophthalmol. 2012;153:850–855.e1. https://doi.org/10.1016/j.ajo.2011.10.028.

    Article  PubMed  Google Scholar 

  53. Pueyo V, González I, Altemir I, Pérez T, Gómez G, Prieto E, et al. Microstructural changes in the retina related to prematurity. Am J Ophthalmol. 2015;159:797–802. https://doi.org/10.1016/j.ajo.2014.12.015.

    Article  PubMed  Google Scholar 

  54. Åkerblom H, Holmström G, Eriksson U, Larsson E. Retinal nerve fibre layer thickness in school-aged prematurely-born children compared to children born at term. Br J Ophthalmol. 2012;96:956–60. https://doi.org/10.1136/bjophthalmol-2011-301010.

    Article  PubMed  Google Scholar 

  55. Park KA, Oh SY. Retinal nerve fiber layer thickness in prematurity is correlated with stage of retinopathy of prematurity. Eye (Lond). 2015;9:1594–602. https://doi.org/10.1038/eye.2015.166.

    Article  Google Scholar 

  56. Ecsedy M, Szamosi A, Karkó C, Zubovics L, Varsányi B, Németh J, et al. A comparison of macular structure imaged by optical coherence tomography in preterm and full-term children. Invest Ophthalmol Vis Sci. 2007;48:5207–11.

    Article  Google Scholar 

  57. Lago AD, Matieli L, Gomes M, Baba NT, Farah ME, Belfort Junior R, et al. Stratus optical coherence tomography findings in patients with retinopathy of prematurity. Arq Bras Oftalmol. 2007;70:19–21.

    Article  Google Scholar 

  58. Hammer DX, Iftimia NV, Ferguson RD, Bigelow CE, Ustun TE, Barnaby AM, et al. Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study. Invest Ophthalmol Vis Sci. 2008;49:2061–70. https://doi.org/10.1167/iovs.07-1228.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Akerblom H, Larsson E, Eriksson U, Holmström G. Central macular thickness is correlated with gestational age at birth in prematurely born children. Br J Ophthalmol. 2011;95:799–803. https://doi.org/10.1136/bjo.2010.184747.

    Article  PubMed  Google Scholar 

  60. Wu WC, Lin RI, Shih CP, Wang NK, Chen YP, Chao AN, et al. Visual acuity, optical components, and macular abnormalities in patients with a history of retinopathy of prematurity. Ophthalmology. 2012;119:1907–16. https://doi.org/10.1016/j.ophtha.2012.02.040.

    Article  PubMed  Google Scholar 

  61. Park KA, Oh SY. Analysis of spectral-domain optical coherence tomography in preterm children: retinal layer thickness and choroidal thickness profiles. Invest Ophthalmol Vis Sci. 2012;53:7201–7. https://doi.org/10.1167/iovs.12-10599.

    Article  PubMed  Google Scholar 

  62. Chrzanowska B, Szumiński M, Oziebło-Kupczyk M, Bakunowicz-Łazarczyk A. Macular morphology and peripapillary retinal nerve fiber layer thickness in children with regressed retinopathy of prematurity [in Polish]. Klin Ocz. 2013;115:280–4.

    Google Scholar 

  63. Moreno TA, O’Connell RV, Chiu SJ, Farsiu S, Cabrera MT, Maldonado RS, et al. Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT. Invest Ophthalmol Vis Sci. 2013;54:4140–7. https://doi.org/10.1167/iovs.12-11471.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Maldonado RS, O’Connell R, Ascher SB, Sarin N, Freedman SF, Wallace DK, et al. Spectral-domain optical coherence tomographic assessment of severity of cystoid macular edema in retinopathy of prematurity. Arch Ophthalmol. 2012;130:569–78. https://doi.org/10.1001/archopthalmol.2011.1846.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Scott AW, Farsiu S, Enyedi LB, Wallace DK, Toth CA. Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device. Am J Ophthalmol. 2009;147:364–73.e2. https://doi.org/10.1016/j.ajo.2008.08.010.

  66. Erol MK, Ozdemir O, Turgut Coban D, Bilgin AB, Dogan B, Sogutlu Sari E, et al. Macular findings obtained by spectral domain optical coherence tomography in retinopathy of prematurity. J Ophthalmol. 2014;2014:468653. https://doi.org/10.1155/2014/468653.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lee AC, Maldonado RS, Sarin N, O’Connell RV, Wallace DK, Freedman SF, et al. Macular features from spectral-domain optical coherence tomography as an adjunct to indirect ophthalmoscopy in retinopathy of prematurity. Retina. 2011;31:1470–82. https://doi.org/10.1097/IAE.0b013e31821dfa6d.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Joshi MM, Trese MT, Capone A Jr. Optical coherence tomography finding in stage 4A retinopathy of prematurity: a theory for visual variability. Ophthalmology. 2006;113:657–60. https://doi.org/10.1016/j.ophtha.2006.01.007.

    Article  PubMed  Google Scholar 

  69. Patel CK. Optical coherence tomography in the management of acute retinopathy of prematurity. Am J Ophthalmol. 2006;141:582–4. https://doi.org/10.1016/j.ajo.2005.10.002.

    Article  PubMed  Google Scholar 

  70. Ehrt O. Infantile and acquired nystagmus in childhood. Eur J Pediatr Neurol. 2012;16:567–72. https://doi.org/10.1016/j.ejpn.2012.02.010.

    Article  Google Scholar 

  71. Lee H, Sheth V, Bibi M, Maconachie G, Patel A, McLean RJ, et al. Potential of handheld optical coherence tomography to determine cause of infantile nystagmus in children by using foveal morphology. Ophthalmology. 2013;120:2714–24. https://doi.org/10.1016/j.ophtha.2013.07.018.

    Article  PubMed  Google Scholar 

  72. Lee H, Purohit R, Sheth V, Papageorgiou E, Maconachie G, McLean RJ, et al. Retinal development in albinism: a prospective study using optical coherence tomography in infants and young children. Lancet. 2015;385(Suppl 1):S14. https://doi.org/10.1016/S0140-6736(15)60329-4.

    Article  PubMed  Google Scholar 

  73. Lee H, Purohit R, Sheth V, McLean RJ, Kohl S, Leroy BP, et al. Retinal development in infants and young children with achromatopsia. Ophthalmology. 2015;122:2145–7. https://doi.org/10.1016/j.ophtha.2015.03.033.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pilat A, Sibley D, McLean RJ, Proudlock FA, Gottlob I. High-resolution imaging of the optic nerve and retina in optic nerve hypoplasia. Ophthalmology. 2015;122:1330–9. https://doi.org/10.1016/j.ophtha.2015.03.020.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gu S, Glaug N, Cnaan A, Packer RJ, Avery RA. Ganglion cell layer-inner plexiform layer thickness and vision loss in young children with optic pathway gliomas. Invest Ophthalmol Vis Sci. 2014;55:1402–8. https://doi.org/10.1167/iovs.13-13119.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wall M. Update on idiopathic intracranial hypertension. Neurol Clin. 2017;35:45–57. https://doi.org/10.1016/j.ncl.2016.08.004.

    Article  PubMed  PubMed Central  Google Scholar 

  77. National Eye Institute. Idiopathic intracranial hypertension. 2018. https://nei.nih.gov/health/iih/intracranial. Accessed 12 Dec 2018.

  78. Gospe SM 3rd, Bhatti MT, El-Dairi MA. Anatomic and visual function outcomes in paediatric idiopathic intracranial hypertension. Br J Ophthalmol. 2015;100:505–9. https://doi.org/10.1136/bjophthalmol-2015-307043.

    Article  PubMed  Google Scholar 

  79. El-Dairi MA, Holgado S, O’Donnell T, Buckley EG, Asrani S, Freedman SF. Optical coherence tomography as a tool for monitoring pediatric pseudotumor cerebri. J AAPOS. 2007;11:564–70.

    Article  Google Scholar 

  80. Shaahinfar A, Whitelaw KD, Mansour KM. Update on abusive head trauma. Curr Opin Pediatr. 2015;27:308–14. https://doi.org/10.1097/MOP.0000000000000207.

    Article  PubMed  Google Scholar 

  81. Chiocca E. Advanced pediatric assessment. 2nd ed. New York: Springer; 2014. p. 484.

    Google Scholar 

  82. Barr RG. Preventing abusive head trauma resulting from a failure of normal interaction between infants and their caregivers. Proc Natl Acad Sci. 2012;109(Suppl 2):17294–301. https://doi.org/10.1073/pnas.1121267109.

    Article  PubMed  Google Scholar 

  83. Christian CW, Block R, Committee on Child Abuse and Neglect, American Academy of Pediatrics. Abusive head trauma in infants and children. Pediatrics. 2009;123:1409–11. https://doi.org/10.1542/peds.2009-0408.

    Article  PubMed  Google Scholar 

  84. Muni RH, Kohly RP, Sohn EH, Lee TC. Hand-held spectral domain optical coherence tomography finding in shaken-baby syndrome. Retina. 2010;30:S45–50. https://doi.org/10.1097/IAE.0b013e3181dc048c.

    Article  PubMed  Google Scholar 

  85. Scott AW, Farsiu S, Enyedi LB, Wallace DK, Toth CA. Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device. Am J Ophthalmol. 2009;147:364–373.e2. https://doi.org/10.1016/j.ajo.2008.08.010.

    Article  PubMed  Google Scholar 

  86. Isaacs H Jr. Tumors of the fetus and newborn. Philadelphia: WB Saunders; 1997.

    Google Scholar 

  87. Moore SW, Satge D, Sasco AJ, Zimmermann A, Plaschkes J. The epidemiology of neonatal tumours. Report of an international working group. Pediatr Surg Int. 2003;19:509–19. https://doi.org/10.1007/s00383-003-1048-8.

    Article  CAS  PubMed  Google Scholar 

  88. Huot CS, Desai KB, Shah VA. Spectral domain optical coherence tomography of combined hamartoma of the retina and retinal pigment epithelium. Ophthalmic Surg Lasers Imaging. 2009;40:322–4.

    Article  Google Scholar 

  89. Yarovaya V, Sioufi K, Shields CL. Parafoveolar retinoblastoma regression with foveal preservation following intraarterial chemotherapy documented on hand-held optical coherence tomography in a newborn. Int J Retin Vitr. 2017;3:43.

    Article  Google Scholar 

  90. Goel N, Pangtey B, Bhushan G, Raina UK, Ghosh B. Spectral-domain optical coherence tomography of astrocytic hamartomas in tuberous sclerosis. Int Ophthalmol. 2012;32:491–3. https://doi.org/10.1007/s10792-012-9586-5.

    Article  PubMed  Google Scholar 

  91. Takahashi A, Otto S, Yoshimura N. High-penetration optical coherence tomography and enhanced depth imaging in presumed retinal pigment epithelial hamartoma. Retin Cases Brief Rep. 2013;7:179–82. https://doi.org/10.1097/ICB.0b013e31827aee75.

    Article  PubMed  Google Scholar 

  92. Yousef YA, Shroff M, Halliday W, Gallie BL, Héon E. Detection of optic nerve disease in retinoblastoma by use of spectral domain optical coherence tomography. J AAPOS. 2012;16:481–3. https://doi.org/10.1016/j.jaapos.2012.05.010.

    Article  PubMed  Google Scholar 

  93. Chong GT, Farsiu S, Freedman SF, Sarin N, Koreishi AF, Izatt JA, et al. Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography. Arch Ophthalmol. 2009;127:37–44.

    Article  Google Scholar 

  94. Lambert V, Coad J, Hicks P, Glacken M. Young children’s perspectives of ideal physical design features for hospital-built environments. J Child Health Care. 2013;18:57–71. https://doi.org/10.1177/1367493512473852.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delia Cabrera DeBuc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kostic, M., Somfai, G.M., Arthur, E., DeBuc, D.C. (2020). Pediatric Neuro-Ophthalmology and OCT. In: Grzybowski, A., Barboni, P. (eds) OCT and Imaging in Central Nervous System Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-26269-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26269-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26268-6

  • Online ISBN: 978-3-030-26269-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics