Skip to main content

The Microenvironment in Follicular Lymphoma

  • Chapter
  • First Online:
Book cover Follicular Lymphoma

Abstract

Current understanding of the pathogenesis of follicular lymphoma (FL) requires in-depth knowledge of the multiple cellular components of its microenvironment, including infiltrating lymphocytes, macrophages, and stromal cells, in addition to tumoral B-lymphocytes. Evidence shows that non-lymphomatous cells within the tumor microenvironment play an essential role, including impairment in antitumor immune response (IR) and promotion of immune tolerance, representing a highly relevant area of research focus for the development of novel strategies to improve clinical outcomes in this disease. In this chapter, we highlight the most prominent discoveries in the last couple of decades on the role of the tumor microenvironment in FL and provide a perspective on the discovery of novel immune targets and the development of new immune therapies for the treatment of patients with FL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuppers R. Prognosis in follicular lymphoma--it’s in the microenvironment. N Engl J Med. 2004;351:2152–3. https://doi.org/10.1056/NEJMp048257.

    Article  PubMed  Google Scholar 

  2. Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004;351:2159–69. doi:351/21/2159 [pii] https://doi.org/10.1056/NEJMoa041869.

  3. Dave SS. Follicular lymphoma and the microenvironment. Blood. 2008;111:4427–8. https://doi.org/10.1182/blood-2008-01-134643.

    Article  CAS  PubMed  Google Scholar 

  4. Li L, Choi YS. Follicular dendritic cell-signaling molecules required for proliferation and differentiation of GC-B cells. Semin Immunol. 2002;14(4):259–66.

    Article  PubMed  Google Scholar 

  5. Chang KC, Huang X, Medeiros LJ, Jones D. Germinal centre-like versus undifferentiated stromal immunophenotypes in follicular lymphoma. J Pathol. 2003;201(3):404–12. https://doi.org/10.1002/path.1478.

    Article  PubMed  Google Scholar 

  6. de Jong D. Molecular pathogenesis of follicular lymphoma: a cross talk of genetic and immunologic factors. J Clin Oncol. 2005;23:6358–63. https://doi.org/10.1200/JCO.2005.26.856.

    Article  PubMed  Google Scholar 

  7. Amé-Thomas P, Maby-El Hajjami H, Monvoisin C, Jean R, Monnier D, Caulet-Maugendre S, et al. Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood. 2007;109(2):693–702. Epub 2006 Sep 19. https://doi.org/10.1182/blood-2006-05-020800.

    Article  CAS  PubMed  Google Scholar 

  8. Denton AE, Linterman MA. Stromal networking: cellular connections in the germinal centre. Curr Opin Immunol. 2017;45:103–11. https://doi.org/10.1016/j.coi.2017.03.001. Epub 2017 Mar 17

    Article  CAS  PubMed  Google Scholar 

  9. Mourcin F, Pangault C, Amin-Ali R, Amé-Thomas P, Tarte K. Stromal cell contribution to human follicular lymphoma pathogenesis. Front Immunol. 2012;3:280. https://doi.org/10.3389/fimmu.2012.00280. eCollection 2012

    Article  PubMed  PubMed Central  Google Scholar 

  10. Banchereau J, Bazan F, Blanchard D, Brière F, Galizzi JP, van Kooten C, et al. The CD40 antigen and its ligand. Annu Rev Immunol. 1994;12:881–922. https://doi.org/10.1146/annurev.iy.12.040194.004313.

    Article  CAS  PubMed  Google Scholar 

  11. Béguelin W, Rivas MA, Calvo Fernández MT, Teater M, Purwada A, Redmond D, et al. EZH2 enables germinal centre formation through epigenetic silencing of CDKN1A and an Rb-E2F1 feedback loop. Nat Commun. 2017;8(1):877. https://doi.org/10.1038/s41467-017-01029-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Purwada A, Jaiswal MK, Ahn H, Noima T, Kitamura D, Gaharwar AK, et al. Ex vivo engineered immune organoids for controlled germinal center reactions. Biomaterials. 2015;63:24–34. https://doi.org/10.1016/j.biomaterials.2015.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weekes CD, Pirruccello SJ, Vose JM, Kuszynski C, Sharp JG. Lymphoma cells associated with bone marrow stromal cells in culture exhibit altered growth and survival. Leuk Lymphoma. 1998;31(1–2):151–65. https://doi.org/10.3109/10428199809057595.

    Article  CAS  PubMed  Google Scholar 

  14. Burack WR, Spence JM, Spence JP, Spence SA, Rock PJ, Shenoy GN, et al. Patient-derived xenografts of low-grade B-cell lymphomas demonstrate roles of the tumor microenvironment. Blood Adv. 2017;1(16):1263–73. https://doi.org/10.1182/bloodadvances.2017005892. eCollection 2017 Jul 11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hollmann C, Gerdes J. Follicular dendritic cells and T cells: nurses and executioners in the germinal centre reaction. J Pathol. 1999;189:147–9. https://doi.org/10.1002/(SICI)1096-9896(199910)189:2<147::AID-PATH433>3.0.CO;2-8.

    Article  CAS  PubMed  Google Scholar 

  16. Kamel OW. Unraveling the mystery of the lymphoid follicle. Am J Pathol. 1999;155:681–2. https://doi.org/10.1016/S0002-9440(10)65165-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koopman G, Pals ST. Cellular interactions in the germinal center: role of adhesion receptors and significance for the pathogenesis of AIDS and malignant lymphoma. Immunol Rev. 1992;126:21–45.

    Article  CAS  PubMed  Google Scholar 

  18. Koopman G, Keehnen RM, Lindhout E, Newman W, Shimizu Y, van Seventer GA, et al. Adhesion through the LFA-1 (CD11a/CD18)-ICAM-1 (CD54) and the VLA-4 (CD49d)-VCAM-1 (CD106) pathways prevents apoptosis of germinal center B cells. J Immunol. 1994;152(8):3760–7.

    CAS  PubMed  Google Scholar 

  19. Ghia P, Caligaris-Cappio F. The indispensable role of microenvironment in the natural history of low-grade B-cell neoplasms. Adv Cancer Res. 2000;79:157–73.

    Article  CAS  PubMed  Google Scholar 

  20. Petrasch S, Kosco M, Perez-Alvarez C, Schmitz J, Brittinger G. Proliferation of non-Hodgkin-lymphoma lymphocytes in vitro is dependent upon follicular dendritic cell interactions. Br J Haematol. 1992;80(1):21–6. https://doi.org/10.1111/j.1365-2141.1992.tb06395.x.

    Article  CAS  PubMed  Google Scholar 

  21. Koopman G, Parmentier HK, Schuurman HJ, Newman W, Meijer CJ, Pals ST. Adhesion of human B cells to follicular dendritic cells involves both the lymphocyte function-associated antigen 1/intercellular adhesion molecule 1 and very late antigen 4/vascular cell adhesion molecule 1 pathways. J Exp Med. 1991;173(6):1297–304.

    Article  CAS  PubMed  Google Scholar 

  22. Taylor ST, Hickman JA, Dive C. Survival signals within the tumour microenvironment suppress drug-induced apoptosis: lessons learned from B lymphomas. Endocr Relat Cancer. 1999;6:21–3.

    Article  CAS  PubMed  Google Scholar 

  23. Shiozawa E, Yamochi-Onizuka T, Yamochi T, Yamamoto Y, Naitoh H, Kawakami K, et al. Disappearance of CD21-positive follicular dendritic cells preceding the transformation of follicular lymphoma: immunohistological study of the transformation using CD21, p53, Ki-67, and P-glycoprotein. Pathol Res Pract. 2003;199(5):293–302. https://doi.org/10.1078/0344-0338-00421.

    Article  CAS  PubMed  Google Scholar 

  24. Jin MK, Hoster E, Dreyling M, Unterhalt M, Hiddemann W, Klapper W. Follicular dendritic cells in follicular lymphoma and types of non-Hodgkin lymphoma show reduced expression of CD23, CD35 and CD54 but no association with clinical outcome. Histopathology. 2011;58(4):586–92. https://doi.org/10.1111/j.1365-2559.2011.03779.x.

    Article  PubMed  Google Scholar 

  25. Blaker YN, Spetalen S, Brodtkorb M, Lingjaerde OC, Beiske K, Østenstad B, et al. The tumour microenvironment influences survival and time to transformation in follicular lymphoma in the rituximab era. Br J Haematol. 2016;175(1):102–14. https://doi.org/10.1111/bjh.14201.

    Article  CAS  PubMed  Google Scholar 

  26. Hase H, Kanno Y, Kojima M, Hasegawa K, Sakurai D, Kojima H, et al. BAFF/BLyS can potentiate B-cell selection with the B-cell coreceptor complex. Blood. 2004;103(6):2257–65. https://doi.org/10.1182/blood-2003-08-2694.

    Article  CAS  PubMed  Google Scholar 

  27. Khouri IF, Saliba RM, Erwin WD, Samuels BI, Korbling M, Medeiros LJ, et al. Nonmyeloablative allogeneic transplantation with or without 90yttrium ibritumomab tiuxetan is potentially curative for relapsed follicular lymphoma: 12-year results. Blood. 2012;119(26):6373–8. https://doi.org/10.1182/blood-2012-03-417808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li YJ, Li ZM, Xia ZJ, Li S, Xia Y, Huang HQ, et al. High APRIL but not BAFF serum levels are associated with poor outcome in patients with follicular lymphoma. Ann Hematol. 2015;94(1):79–88. https://doi.org/10.1007/s00277-014-2173-2.

    Article  CAS  PubMed  Google Scholar 

  29. Butsch R, Lukas Waelti S, Schaerer S, Braun J, Korol D, Probst-Hensch N, et al. Intratumoral plasmacytoid dendritic cells associate with increased survival in patients with follicular lymphoma. Leuk Lymphoma. 2011;52(7):1230–8. https://doi.org/10.3109/10428194.2011.569619.

    Article  CAS  PubMed  Google Scholar 

  30. Vinuesa CG, Linterman MA, Yu D, MacLennan IC. Follicular helper T cells. Annu Rev Immunol. 2016;34:335–68.

    Article  CAS  PubMed  Google Scholar 

  31. Fazilleau N, Mark L, McHeyzer-Williams LJ, McHeyzer-Williams MG. Follicular helper T cells: lineage and location. Immunity. 2009;30:324–35. https://doi.org/10.1016/j.immuni.2009.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gaulard P, de Leval L. Follicular helper T cells: implications in neoplastic hematopathology. Semin Diagn Pathol. 2011;28:202–13.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chung Y, Tanaka S, Chu F, Nurieva RI, Martinez GJ, Rawal S, et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat Med. 2011;17(8):983–8. https://doi.org/10.1038/nm.2426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Linterman MA, Pierson W, Lee SK, Kallies A, Kawamoto S, Rayner TF, et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat Med. 2011;17(8):975–82. https://doi.org/10.1038/nm.2425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brady MT, Hilchey SP, Hyrien O, Spence SA, Bernstein SH. Mesenchymal stromal cells support the viability and differentiation of follicular lymphoma-infiltrating follicular helper T-cells. PLoS One. 2014;9:e97597. https://doi.org/10.1371/journal.pone.0097597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ame-Thomas P, Le Priol J, Yssel H, Caron G, Pangualt C, Jean R, et al. Characterization of intratumoral follicular helper T cells in follicular lymphoma: role in the survival of malignant B cells. Leukemia. 2012;26(5):1053–63. https://doi.org/10.1038/leu.2011.301.

    Article  CAS  PubMed  Google Scholar 

  37. Richendollar BG, Pohlman B, Elson P, Hsi ED. Follicular programmed death 1-positive lymphocytes in the tumor microenvironment are an independent prognostic factor in follicular lymphoma. Hum Pathol. 2011;42:552–7. https://doi.org/10.1016/j.humpath.2010.08.015.

    Article  CAS  PubMed  Google Scholar 

  38. Myklebust JH, Irish JM, Brody J, Czerwinski DK, Houot R, Kohrt HE, et al. High PD-1 expression and suppressed cytokine signaling distinguish T cells infiltrating follicular lymphoma tumors from peripheral T cells. Blood. 2013;121(8):1367–76. https://doi.org/10.1182/blood-2012-04-421826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pangault C, Amé-Thomas P, Ruminy P, Rossille D, Caron G, Baia M, et al. Follicular lymphoma cell niche: identification of a preeminent IL-4-dependent T(FH)-B cell axis. Leukemia. 2010;24(12):2080–9. https://doi.org/10.1038/leu.2010.223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yildiz M, Li H, Bernard D, Amin NA, Ouillette P, Jones S, et al. Activating STAT6 mutations in follicular lymphoma. Blood. 2015;125(4):668–79. https://doi.org/10.1182/blood-2014-06-582650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Calvo KR, Dabir B, Kovach A, Devor C, Bandle R, Bond A, et al. IL-4 protein expression and basal activation of Erk in vivo in follicular lymphoma. Blood. 2008;112(9):3818–26. https://doi.org/10.1182/blood-2008-02-138933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rawal S, Chu F, Zhang M, Park HJ, Nattamai D, Kannan S, et al. Cross talk between follicular Th cells and tumor cells in human follicular lymphoma promotes immune evasion in the tumor microenvironment. J Immunol. 2013;190(12):6681–93. https://doi.org/10.4049/jimmunol.1201363.

    Article  CAS  PubMed  Google Scholar 

  43. Pandey S, Mourcin F, Marchand T, Nayar S, Guirriec M, Pangault C, et al. IL-4/CXCL12 loop is a key regulator of lymphoid stroma function in follicular lymphoma. Blood. 2017;129(18):2507–18. https://doi.org/10.1182/blood-2016-08-737239.

    Article  CAS  PubMed  Google Scholar 

  44. Coquet JM, Kyparissoudis K, Pellicci DG, Besra G, Berzins SP, Smyth MJ, Godfrey DI. IL-21 is produced by NKT cells and modulates NKT cell activation and cytokine production. J Immunol. 2007;178(5):2827–34.

    Article  CAS  PubMed  Google Scholar 

  45. Spolski R, Leonard WJ. IL-21 and T follicular helper cells. Int Immunol. 2010;22:7–12. https://doi.org/10.1093/intimm/dxp112.

    Article  CAS  PubMed  Google Scholar 

  46. de Totero D, Capaia M, Fabbi M, Croce M, Meazza R, Cutrona G, et al. Heterogeneous expression and function of IL-21R and susceptibility to IL-21-mediated apoptosis in follicular lymphoma cells. Exp Hematol. 2010;38(5):373–83. https://doi.org/10.1016/j.exphem.2010.02.008.

    Article  CAS  PubMed  Google Scholar 

  47. Akamatsu N, Yamada Y, Hasegawa H, Makabe K, Asano R, Kumagai I, et al. High IL-21 receptor expression and apoptosis induction by IL-21 in follicular lymphoma. Cancer Lett. 2007;256(2):196–206. https://doi.org/10.1016/j.canlet.2007.06.001.

    Article  CAS  PubMed  Google Scholar 

  48. Wood B, Sikdar S, Choi SJ, Virk S, Alhejaily A, Baetz T, LeBrun DP. Abundant expression of interleukin-21 receptor in follicular lymphoma cells is associated with more aggressive disease. Leuk Lymphoma. 2013;54(6):1212–20. https://doi.org/10.3109/10428194.2012.742522.

    Article  CAS  PubMed  Google Scholar 

  49. Arai J, Yasukawa M, Yakushijin Y, Miyazaki T, Fujita S. Stromal cells in lymph nodes attract B-lymphoma cells via production of stromal cell-derived factor-1. Eur J Haematol. 2000;64:323–32.

    Article  CAS  PubMed  Google Scholar 

  50. Corcione A, Ottonello L, Tortolina G, Facchetti P, Airoldi I, Guglielmino R, et al. Stromal cell-derived factor-1 as a chemoattractant for follicular center lymphoma B cells. J Natl Cancer Inst. 2000;92:628–35.

    Article  CAS  PubMed  Google Scholar 

  51. Matas-Céspedes A, Rodriguez V, Kalko SG, Vidal-Crespo A, Rosich L, Casserras T, et al. Disruption of follicular dendritic cells-follicular lymphoma cross-talk by the pan-PI3K inhibitor BKM120 (Buparlisib). Clin Cancer Res. 2014;20(13):3458–71. https://doi.org/10.1158/1078-0432.CCR-14-0154.

    Article  CAS  PubMed  Google Scholar 

  52. Ansel KM, Ngo VN, Hyman PL, Luther SA, Förster R, Sedgwick JD, et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature. 2000;406(6793):309–14. https://doi.org/10.1038/35018581.

    Article  CAS  PubMed  Google Scholar 

  53. Moser B. CXCR5, the defining marker for follicular B helper T (TFH) cells. Front Immunol. 2015;6:296. https://doi.org/10.3389/fimmu.2015.00296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ansell SM, Vonderheide RH. Cellular composition of the tumor microenvironment. Am Soc Clin Oncol Educ Book. 2013; https://doi.org/10.1200/EdBook_AM.2013.33.e91.

    Article  Google Scholar 

  55. Förster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell. 1996;87(6):1037–47.

    Article  PubMed  Google Scholar 

  56. Trentin L, Cabrelle A, Facco M, Carollo D, Miorin M, Tosoni A, et al. Homeostatic chemokines drive migration of malignant B cells in patients with non-Hodgkin lymphomas. Blood. 2004;104(2):502–8. https://doi.org/10.1182/blood-2003-09-3103.

    Article  CAS  PubMed  Google Scholar 

  57. Husson H, Freedman AS, Cardoso AA, Schultze J, Munoz O, Strola G, et al. CXCL13 (BCA-1) is produced by follicular lymphoma cells: role in the accumulation of malignant B cells. Br J Haematol. 2002;119(2):492–5.

    Article  CAS  PubMed  Google Scholar 

  58. Takemura S, Braun A, Crowson C, Kurtin PJ, Cofield RH, O’Fallon WM, et al. Lymphoid neogenesis in rheumatoid synovitis. J Immunol. 2001;167(2):1072–80.

    Article  CAS  PubMed  Google Scholar 

  59. Husson H, Carideo EG, Cardoso AA, Lugli SM, Neuberg D, Munoz O, et al. MCP-1 modulates chemotaxis by follicular lymphoma cells. Br J Haematol. 2001;115(3):554–62.

    Article  CAS  PubMed  Google Scholar 

  60. Fujii A, Oshima K, Hamasaki M, Utsunomiya H, Okazaki M, Kagami Y, et al. Differential expression of cytokines, chemokines and their receptors in follicular lymphoma and reactive follicular hyperplasia: assessment by complementary DNA microarray. Oncol Rep. 2005;13(5):819–24.

    CAS  PubMed  Google Scholar 

  61. Balkwill F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev. 2002;13:135–41.

    Article  CAS  PubMed  Google Scholar 

  62. Salles G, Bienvenu J, Bastion Y, Barbier Y, Doche C, Warzocha K, et al. Elevated circulating levels of TNFalpha and its p55 soluble receptor are associated with an adverse prognosis in lymphoma patients. Br J Haematol. 1996;93(2):352–9.

    Article  CAS  PubMed  Google Scholar 

  63. Green MR, Gentles AJ, Nair RV, Irish JM, Kihira S, Liu CL, et al. Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. Blood. 2013;121(9):1604–11. https://doi.org/10.1182/blood-2012-09-457283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fischer T, Zing NPC, Chiattone CS, Federico M, Luminari S. Transformed follicular lymphoma. Ann Hematol. 2018;97(1):17–29. https://doi.org/10.1007/s00277-017-3151-2.

    Article  CAS  PubMed  Google Scholar 

  65. Cheung KJ, Johnson NA, Affleck JG, Severson T, Steidl C, Ben-Neriah S, et al. Acquired TNFRSF14 mutations in follicular lymphoma are associated with worse prognosis. Cancer Res. 2010;70(22):9166–74. https://doi.org/10.1158/0008-5472.CAN-10-2460.

    Article  CAS  PubMed  Google Scholar 

  66. Boice M, Salloum D, Mourcin F, Sanghvi V, Amin R, Oricchio E, et al. Loss of the HVEM tumor suppressor in lymphoma and restoration by modified CAR-T cells. Cell. 2016;167(2):405–418.e13. https://doi.org/10.1016/j.cell.2016.08.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Leger-Ravet MB, Devergne O, Peuchmaur M, Solal-Celigny P, Brousse N, Gaulard P, et al. In situ detection of activated cytotoxic cells in follicular lymphomas. Am J Pathol. 1994;144(3):492–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wahlin BE, Sander B, Christensson B, Kimby E. CD8+T-cell content in diagnostic lymph nodes measured by flow cytometry is a predictor of survival in follicular lymphoma. Clin Cancer Res. 2007;13:388–97. https://doi.org/10.1158/1078-0432.Ccr-06-1734.

    Article  CAS  PubMed  Google Scholar 

  69. Laurent C, Charmpi K, Gravelle P, Tosolini M, Franchet C, Ysebaert L, et al. Several immune escape patterns in non-Hodgkin’s lymphomas. Oncoimmunology. 2015;4(8):e1026530. https://doi.org/10.1080/2162402X.2015.1026530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang ZZ, Liang AB, Ansell SM. T-cell-mediated antitumor immunity in B-cell non-Hodgkin lymphoma: activation, suppression and exhaustion. Leuk Lymphoma. 2015;56:2498–504. https://doi.org/10.3109/10428194.2015.1011640.

    Article  CAS  PubMed  Google Scholar 

  71. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15:486–99. https://doi.org/10.1038/nri3862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gravelle P, Do C, Franchet C, Mueller S, Oberic L, Ysebaert L, et al. Impaired functional responses in follicular lymphoma CD8(+)TIM-3(+) T lymphocytes following TCR engagement. Oncoimmunology. 2016;5(10):e1224044. eCollection 2016. https://doi.org/10.1080/2162402X.2016.1224044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang ZZ, Kim HJ, Villasboas JC, Chen YP, Price-Troska T, Jalali S, et al. Expression of LAG-3 defines exhaustion of intratumoral PD-1(+) T cells and correlates with poor outcome in follicular lymphoma. Oncotarget. 2017;8(37):61425–39. https://doi.org/10.18632/oncotarget.18251.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Meirav K, Ginette S, Tamar T, Iris B, Arnon N, Abraham A. Extrafollicular PD1 and intrafollicular CD3 expression are associated with survival in follicular lymphoma. Clin Lymphoma Myeloma Leuk. 2017;17(10):645–9. https://doi.org/10.1016/j.clml.2017.06.026.

    Article  PubMed  Google Scholar 

  75. Josefsson SE, Huse K, Kolstad A, Beiske K, Pende D, Steen CB, et al. T cells expressing checkpoint receptor TIGIT are enriched in follicular lymphoma tumors and characterized by reversible suppression of T-cell receptor signaling. Clin Cancer Res. 2018;24(4):870–81. https://doi.org/10.1158/1078-0432.CCR-17-2337.

    Article  CAS  PubMed  Google Scholar 

  76. Zhu Y, Paniccia A, Schulick AC, Chen W, Koenig MR, Byers JT, et al. Identification of CD112R as a novel checkpoint for human T cells. J Exp Med. 2016;213(2):167–76. https://doi.org/10.1084/jem.20150785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE, et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood. 2003;101(7):2711–20. https://doi.org/10.1182/blood-2002-07-2103.

    Article  CAS  PubMed  Google Scholar 

  78. Alvaro T, Lejeune M, Salvadó MT, Lopez C, Jaén J, Bosch R, Pons LE. Immunohistochemical patterns of reactive microenvironment are associated with clinicobiologic behavior in follicular lymphoma patients. J Clin Oncol. 2006;24(34):5350–7. https://doi.org/10.1200/JCO.2006.06.4766.

    Article  PubMed  Google Scholar 

  79. Focosi D, Petrini M. CD57 expression on lymphoma microenvironment as a new prognostic marker related to immune dysfunction. J Clin Oncol. 2007;25:1289–91; author reply 1291-1282. https://doi.org/10.1200/JCO.2006.10.2251.

    Article  PubMed  Google Scholar 

  80. Magnano L, Martínez A, Carreras J, Martínez-Trillos A, Giné E, Rovira J, et al. T-cell subsets in lymph nodes identify a subgroup of follicular lymphoma patients with favorable outcome. Leuk Lymphoma. 2017;58(4):842–50. https://doi.org/10.1080/10428194.2016.1217525.

    Article  CAS  PubMed  Google Scholar 

  81. Ramsay AG, Clear AJ, Kelly G, Fatah R, Matthews J, Macdougall F, et al. Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumor microenvironment and immunotherapy. Blood. 2009;114(21):4713–20. https://doi.org/10.1182/blood-2009-04-217687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kiaii S, Clear AJ, Ramsay AG, Davies D, Sangaralingam A, Lee A, et al. Follicular lymphoma cells induce changes in T-cell gene expression and function: potential impact on survival and risk of transformation. J Clin Oncol. 2013;31(21):2654–61. https://doi.org/10.1200/JCO.2012.44.2137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Garcia-Munoz R, Panizo C. Follicular lymphoma (FL): immunological tolerance theory in FL. Hum Immunol. 2017;8:138–45. https://doi.org/10.1016/j.humimm.2016.09.010.

    Article  CAS  Google Scholar 

  84. Xerri L, Huet S, Venstrom JM, Szafer-Glusman E, Fabiani B, Canioni D, et al. Rituximab treatment circumvents the prognostic impact of tumor-infiltrating T-cells in follicular lymphoma patients. Hum Pathol. 2017;64:128–36. https://doi.org/10.1016/j.humpath.2017.03.023.

    Article  CAS  PubMed  Google Scholar 

  85. Lee AM, Clear AJ, Calaminici M, Davies AJ, Jordan S, MacDougall F, et al. Number of CD4+ cells and location of forkhead box protein P3-positive cells in diagnostic follicular lymphoma tissue microarrays correlates with outcome. J Clin Oncol. 2006;24(31):5052–9. https://doi.org/10.1200/JCO.2006.06.4642.

    Article  CAS  PubMed  Google Scholar 

  86. Glas AM, Knoops L, Delahaye L, Kersten MJ, Kibbelaar RE, Wessels LA, et al. Gene-expression and immunohistochemical study of specific T-cell subsets and accessory cell types in the transformation and prognosis of follicular lymphoma. J Clin Oncol. 2007;25(4):390–8. https://doi.org/10.1200/JCO.2006.06.1648.

    Article  CAS  PubMed  Google Scholar 

  87. Farinha P, Masoudi H, Skinnider BF, Shumansky K, Spinelli JJ, Gill K, et al. Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL). Blood. 2005;106(6):2169–74. https://doi.org/10.1182/blood-2005-04-1565.

    Article  CAS  PubMed  Google Scholar 

  88. Clear AJ, Lee AM, Calaminici M, Ramsay AG, Morris KJ, Hallam S, et al. Increased angiogenic sprouting in poor prognosis FL is associated with elevated numbers of CD163+ macrophages within the immediate sprouting microenvironment. Blood. 2010;115(24):5053–6. https://doi.org/10.1182/blood-2009-11-253260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Farinha P, Kyle AH, Minchinton AI, Connors JM, Karsan A, Gascoyne RD. Vascularization predicts overall survival and risk of transformation in follicular lymphoma. Haematologica. 2010;95(12):2157–60. https://doi.org/10.3324/haematol.2009.021766.

    Article  PubMed  PubMed Central  Google Scholar 

  90. He L, Liang JH, Wu JZ, Li Y, Qin SC, Miao Y, et al. Low absolute CD4+ T cell counts in peripheral blood are associated with inferior survival in follicular lymphoma. Tumour Biol. 2016;37(9):12589–95. https://doi.org/10.1007/s13277-016-5124-9.

    Article  PubMed  Google Scholar 

  91. Yoshida N, Oda M, Kuroda Y, Katayama Y, Okikawa Y, Masunari T, et al. Clinical significance of sIL-2R levels in B-cell lymphomas. PLoS One. 2013;8(11):e78730. https://doi.org/10.1371/journal.pone.0078730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ferretti E, Tripodo C, Pagnan G, Guarnotta C, Marimpietri D, Corrias MV, et al. The interleukin (IL)-31/IL-31R axis contributes to tumor growth in human follicular lymphoma. Leukemia. 2015;29(4):958–67. https://doi.org/10.1038/leu.2014.291.

    Article  CAS  PubMed  Google Scholar 

  93. Ferretti E, Corcione A, Pistoia V. The IL-31/IL-31 receptor axis: general features and role in tumor microenvironment. J Leukoc Biol. 2017;102:711–7. https://doi.org/10.1189/jlb.3MR0117-033R.

    Article  CAS  PubMed  Google Scholar 

  94. Lohneis P, Wienert S, Klauschen F, Anagnostopoulos I, Johrens K. Fibrosis in low-grade follicular lymphoma – a link to the TH2 immune reaction. Leuk Lymphoma. 2017;58:1190–6. https://doi.org/10.1080/10428194.2016.1231404.

    Article  CAS  PubMed  Google Scholar 

  95. Le KS, Thibult ML, Just-Landi S, Pastor S, Gondois-Rey F, Granjeaud S, et al. Follicular B lymphomas generate regulatory T cells via the ICOS/ICOSL pathway and are susceptible to treatment by anti-ICOS/ICOSL therapy. Cancer Res. 2016;76(16):4648–60. https://doi.org/10.1158/0008-5472.CAN-15-0589.

    Article  CAS  PubMed  Google Scholar 

  96. Carreras J, et al. High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood. 2006;108(9):2957–64. Epub 2006 Jul 6. doi:blood-2006-04-018218 [pii]

    Article  CAS  PubMed  Google Scholar 

  97. Kelley TW, Parker CJ. CD4 (+)CD25 (+)Foxp3 (+) regulatory T cells and hematologic malignancies. Front Biosci (Schol Ed). 2010;2:980–92.

    Article  Google Scholar 

  98. Farinha P, Al-Tourah A, Gill K, Klasa R, Connors JM, Gascoyne RD. The architectural pattern of FOXP3-positive T cells in follicular lymphoma is an independent predictor of survival and histologic transformation. Blood. 2010;115(2):289–95. https://doi.org/10.1182/blood-2009-07-235598.

    Article  CAS  PubMed  Google Scholar 

  99. Lim HW, Hillsamer P, Kim CH. Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. J Clin Invest. 2004;114:1640–9. https://doi.org/10.1172/JCI22325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ngo VN, Tang HL, Cyster JG. Epstein-Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells. J Exp Med. 1998;188(1):181–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ai WZ, Hou JZ, Zeiser R, Czerwinski D, Negrin RS, Levy R. Follicular lymphoma B cells induce the conversion of conventional CD4(+) T cells to T-regulatory cells. Int J Cancer. 2009;124(1):239–44. https://doi.org/10.1002/ijc.23881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM. CD70+ non-Hodgkin lymphoma B cells induce Foxp3 expression and regulatory function in intratumoral CD4+CD25 T cells. Blood. 2007;110:2537–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Voo KS, Foglietta M, Percivalle E, Chu F, Nattamai D, Harline M, et al. Selective targeting of Toll-like receptors and OX40 inhibit regulatory T-cell function in follicular lymphoma. Int J Cancer. 2014;135(12):2834–46. https://doi.org/10.1002/ijc.28937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chevalier N, Mueller M, Mougiakakos D, Ihorst G, Marks R, Schmitt-Graeff A, Veelken H. Analysis of dendritic cell subpopulations in follicular lymphoma with respect to the tumor immune microenvironment. Leuk Lymphoma. 2016;57(9):2150–60. https://doi.org/10.3109/10428194.2015.1135432.

    Article  CAS  PubMed  Google Scholar 

  105. Wahlin BE, Aggarwal M, Montes-Moreno S, Gonzalez LF, Roncador G, Sanchez-Verde L, et al. A unifying microenvironment model in follicular lymphoma: outcome is predicted by programmed death-1--positive, regulatory, cytotoxic, and helper T cells and macrophages. Clin Cancer Res. 2010;16(2):637–50. https://doi.org/10.1158/1078-0432.CCR-09-2487.

    Article  CAS  PubMed  Google Scholar 

  106. Nelson LS, Mansfield JR, Lloyd R, Oguejiofor K, Salih Z, Menasce LP, et al. Automated prognostic pattern detection shows favourable diffuse pattern of FOXP3(+) Tregs in follicular lymphoma. Br J Cancer. 2015;113(8):1197–205. https://doi.org/10.1038/bjc.2015.291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhao DM, Thornton AM, DiPaolo RJ, Shevach EM. Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood. 2006;107(10):3925–32. https://doi.org/10.1182/blood-2005-11-4502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lapenta C, Donati S, Spadaro F, Castaldo P, Belardelli F, Cox MC, Santini SM. NK cell activation in the antitumor response induced by IFN-alpha dendritic cells loaded with apoptotic cells from follicular lymphoma patients. J Immunol. 2016;197(3):795–806. https://doi.org/10.4049/jimmunol.1600262.

    Article  CAS  PubMed  Google Scholar 

  109. Wogsland CE, Greenplate AR, Kolstad A, Myklebust JH, Irish JM, Huse K. Mass cytometry of follicular lymphoma tumors reveals intrinsic heterogeneity in proteins including HLA-DR and a deficit in nonmalignant plasmablast and germinal center B-cell populations. Cytometry B Clin Cytom. 2017;92(1):79–87. https://doi.org/10.1002/cyto.b.21498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Green MR, Kihira S, Liu CL, Nair RV, Salari R, Gentles AJ, et al. Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation. Proc Natl Acad Sci U S A. 2015;112(10):E1116–25. https://doi.org/10.1073/pnas.1501199112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Green MR, Yoon H, Boss JM. Epigenetic regulation during B cell differentiation controls CIITA promoter accessibility. J Immunol. 2006;177(6):3865–73.

    Article  CAS  PubMed  Google Scholar 

  112. Liu A, Takahashi M, Toba K, Zheng Z, Hashimoto S, Nikkuni K, et al. Regulation of the expression of MHC class I and II by class II transactivator (CIITA) in hematopoietic cells. Hematol Oncol. 1999;17(4):149–60.

    Article  PubMed  Google Scholar 

  113. De S, Shaknovich R, Riester M, Elemento O, Geng H, Kormaksson M, et al. Aberration in DNA methylation in B-cell lymphomas has a complex origin and increases with disease severity. PLoS Genet. 2013;9(1):e1003137. https://doi.org/10.1371/journal.pgen.1003137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hopp L, Löffler-Wirth H, Binder H. Epigenetic heterogeneity of B-cell lymphoma: DNA methylation, gene expression and chromatin states. Genes (Basel). 2015;6(3):812–40. https://doi.org/10.3390/genes6030812.

    Article  CAS  Google Scholar 

  115. Stevens WBC, Mendeville M, Redd R, Clear AJ, Bladergroen R, Calaminici M, et al. Prognostic relevance of CD163 and CD8 combined with EZH2 and gain of chromosome 18 in follicular lymphoma: a study by the Lunenburg Lymphoma Biomarker Consortium. Haematologica. 2017;102(8):1413–23. https://doi.org/10.3324/haematol.2017.165415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhu D, McCarthy H, Ottensmeier CH, Johnson P, Hamblin TJ, Stevenson FK. Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood. 2002;99(7):2562–8.

    Article  CAS  PubMed  Google Scholar 

  117. Zhu D, Ottensmeier CH, Du MQ, McCarthy H, Stevenson FK. Incidence of potential glycosylation sites in immunoglobulin variable regions distinguishes between subsets of Burkitt’s lymphoma and mucosa-associated lymphoid tissue lymphoma. Br J Haematol. 2003;120:217–22.

    Article  CAS  PubMed  Google Scholar 

  118. Hollander N, Haimovich J. Altered N-linked glycosylation in follicular lymphoma and chronic lymphocytic leukemia: involvement in pathogenesis and potential therapeutic targeting. Front Immunol. 2017;8:912. https://doi.org/10.3389/fimmu.2017.00912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Coelho V, Krysov S, Ghaemmaghami AM, Emara M, Potter KN, Johnson P, et al. Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proc Natl Acad Sci U S A. 2010;107(43):18587–92. https://doi.org/10.1073/pnas.1009388107.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Amin R, Mourcin F, Uhel F, Pangault C, Ruminy P, Dupré L, et al. DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma. Blood. 2015;126(16):1911–20. https://doi.org/10.1182/blood-2015-04-640912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Linley A, Krysov S, Ponzoni M, Johnson PW, Packham G, Stevenson FK. Lectin binding to surface Ig variable regions provides a universal persistent activating signal for follicular lymphoma cells. Blood. 2015;126(16):1902–10. https://doi.org/10.1182/blood-2015-04-640805.

    Article  CAS  PubMed  Google Scholar 

  122. Marcus R, Davies A, Ando K, Klapper W, Opat S, Owen C, et al. Obinutuzumab for the first-line treatment of follicular lymphoma. N Engl J Med. 2017;377:1331–44. https://doi.org/10.1056/NEJMoa1614598.

    Article  CAS  PubMed  Google Scholar 

  123. Nair R, Tabchi S, Hagemeister F. Obinutuzumab treatment of follicular lymphoma. N Engl J Med. 2017;377:2605. https://doi.org/10.1056/NEJMc1714337.

    Article  PubMed  Google Scholar 

  124. Markham A. Copanlisib: first global approval. Drugs. 2017;77:2057–62. https://doi.org/10.1007/s40265-017-0838-6.

    Article  CAS  PubMed  Google Scholar 

  125. Dreyling M, Morschhauser F, Bouabdallah K, Bron D, Cunningham D, Assouline SE, et al. Phase II study of copanlisib, a PI3K inhibitor, in relapsed or refractory, indolent or aggressive lymphoma. Ann Oncol. 2017;28(9):2169–78. https://doi.org/10.1093/annonc/mdx289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fowler NH, Davis RE, Rawal S, Nastoupil L, Hagemeister FB, McLaughlin P, et al. Safety and activity of lenalidomide and rituximab in untreated indolent lymphoma: an open-label, phase 2 trial. Lancet Oncol. 2014;15(12):1311–8. https://doi.org/10.1016/S1470-2045(14)70455-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Blum KA. B-cell receptor pathway modulators in NHL. Hematology Am Soc Hematol Educ Program. 2015;2015:82–91. https://doi.org/10.1182/asheducation-2015.1.82.

    Article  PubMed  Google Scholar 

  128. Wolska-Washer A, Robak P, Smolewski P, Robak T. Emerging antibody-drug conjugates for treating lymphoid malignancies. Expert Opin Emerg Drugs. 2017;22:259–73. https://doi.org/10.1080/14728214.2017.1366447.

    Article  CAS  PubMed  Google Scholar 

  129. Palanca-Wessels MC, Czuczman M, Salles G, Assouline S, Sehn LH, Flinn I, et al. Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol. 2015;16(6):704–15. https://doi.org/10.1016/S1470-2045(15)70128-2.

    Article  CAS  PubMed  Google Scholar 

  130. Roberts ZJ, Better M, Bot A, Roberts MR, Ribas A. Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL. Leuk Lymphoma. 2018;59(8):1785–96. https://doi.org/10.1080/10428194.2017.1387905. Epub 2017 Oct 23

    Article  CAS  PubMed  Google Scholar 

  131. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DE, Jaocobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377:2531–44. https://doi.org/10.1056/NEJMoa1707447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sureda A, Zhang MJ, Dreger P, Carreras J, Fenske T, Finel H, et al. Allogeneic hematopoietic stem cell transplantation for relapsed follicular lymphoma: a combined analysis on behalf of the Lymphoma Working Party of the EBMT and the Lymphoma Committee of the CIBMTR. Cancer. 2018;124(8):1733–42. https://doi.org/10.1002/cncr.31264.

    Article  CAS  PubMed  Google Scholar 

  133. Hess G. The role of stem cell transplantation in follicular lymphoma. Best Pract Res Clin Haematol. 2018;31:31–40. https://doi.org/10.1016/j.beha.2017.10.009.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sattva S. Neelapu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Puebla-Osorio, N., Strati, P., Neelapu, S.S. (2020). The Microenvironment in Follicular Lymphoma. In: Fowler, N. (eds) Follicular Lymphoma. Springer, Cham. https://doi.org/10.1007/978-3-030-26211-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26211-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26210-5

  • Online ISBN: 978-3-030-26211-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics