Skip to main content

Follicular Lymphoma: Epidemiology, Pathogenesis and Initiating Events

  • Chapter
  • First Online:
Follicular Lymphoma

Abstract

Follicular lymphoma (FL) is the most common indolent lymphoma in the United States and Western Europe and arises from a complex interplay of genetic and environmental factors, though most patients do not have clearly identifiable risk factors at presentation. A family history of non-Hodgkin lymphoma (NHL), single-nucleotide polymorphisms (SNPs) in both HLA and non-HLA regions, exposure to pesticides and chemical solvents, Sjogren’s syndrome, heavy smoking (especially in women), obesity and sedentary lifestyle have been associated with increased risk. Follicular lymphoma (FL) cells have dependence on a microenvironment mimicking the normal lymph node germinal centre (GC). The characteristic t(14;18) BCL2-IGH translocation, present in around 85% of FL cases, is recognised as the likely initial necessary although not sufficient abnormality present early in a multihit pathway which culminates in clinically overt follicular lymphoma. The role of the microenvironment in FL appears to simultaneously support growth and survival of the neoplastic cells and suppress the antitumour immune response. There is progression from early genetic hits to a dynamic evolution of subclones, in which subsequent genetic hits may be variably seen in clinically evident clonal expansions, in situ disease or sequestration within niches such as the bone marrow, with subclones re-emerging following therapy or resulting in transformation to high-grade lymphoma. Better understanding of issues such as the drivers of germinal centre re-entry of early FL clones, the nature of the impaired B-cell receptor (BCR) signalling and the complex tumour microenvironment may present targets for innovative therapeutic strategies.

All others contributed equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Linet MS, Vajdic CM, Morton LM, Anneclaire DR. Medical history, lifestyle, family history, and occupational risk factors for follicular lymphoma: the interlymph non-Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014;48:26–40.

    Article  Google Scholar 

  2. Ambinder AJ, Shenoy PJ, Malik N, Maggioncalda A, Nastoupil LJ, Flowers CR. Exploring risk factors for follicular lymphoma. Adv Hematol. 2012;2012:13.

    Google Scholar 

  3. Teras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A, Flowers CR. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016;66(6):443–59.

    Article  PubMed  Google Scholar 

  4. Smith A, Crouch S, Lax S, Li J. Lymphoma incidence, survival and prevalence 2004–2014: sub-type analyses from the UK’s Haematological Malignancy Research Network. Br J Cancer. 2015;112:1575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morton LM, Wang SS, Devesa SS, Hartge P, Weisenburger DD, Linet MS. Lymphoma incidence patterns by WHO subtype in the United States, 1992–2001. Blood. 2006;107(1):265–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim JM, Ko YH, Lee SS, Huh J, Kang CS, Kim CW, et al. WHO classification of malignant lymphomas in Korea: report of the Third Nationwide Study. J Pathol Transl Med. 2011;45(3):254–60.

    Google Scholar 

  7. Anderson JR, Armitage JO, Weisenburger DD. Epidemiology of the non-Hodgkin’s lymphomas: distributions of the major subtypes differ by geographic locations. Ann Oncol. 1998;9(7):717–20.

    Article  CAS  PubMed  Google Scholar 

  8. Intragumtornchai T, Bunworasate U, Wudhikarn K, Lekhakula A, Julamanee J, Chansung K, et al. Non-Hodgkin lymphoma in South East Asia: an analysis of the histopathology, clinical features, and survival from Thailand. Hematolog Oncol. 2018;36(1):28–36.

    Article  Google Scholar 

  9. Shirley MH, Sayeed S, Barnes I, Finlayson A, Ali R. Incidence of haematological malignancies by ethnic group in England, 2001–7. Br J Haematol. 2013;163(4):465–77.

    Article  PubMed  Google Scholar 

  10. Naresh KN, Srinivas V, Soman CS. Distribution of various subtypes of non-Hodgkin’s lymphoma in India: a study of 2773 lymphomas using R.E.A.L. and WHO classifications. Ann Oncol. 2000;11(Suppl 1):63–7.

    Article  PubMed  Google Scholar 

  11. Clarke CA, Glaser SL, Gomez SL, Wang SS, Keegan TH, Yang J, et al. Lymphoid malignancies in U.S. Asians: incidence rate differences by birthplace and acculturation. Cancer Epidemiol Biomark Prev. 2011;20(6):1064–77.

    Article  Google Scholar 

  12. Herrinton LJ, Goldoft M, Schwartz SM, Weiss NS. The incidence of non-Hodgkin’s lymphoma and its histologic subtypes in Asian migrants to the United States and their descendants. Cancer Causes Control. 1996;7(2):224–30.

    Article  CAS  PubMed  Google Scholar 

  13. Altieri A, Bermejo JL, Hemminki K. Familial risk for non-Hodgkin lymphoma and other lymphoproliferative malignancies by histopathologic subtype: the Swedish Family-Cancer Database. Blood. 2005;106(2):668–72.

    Article  CAS  PubMed  Google Scholar 

  14. Conde L, Halperin E, Akers NK, Brown KM, Smedby KE, Rothman N, et al. Genome-wide association study of follicular lymphoma identifies a risk locus at 6p21.32. Nat Genet. 2010;42(8):661–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smedby KE, Foo JN, Skibola CF, Darabi H, Conde L, Hjalgrim H, et al. GWAS of follicular lymphoma reveals allelic heterogeneity at 6p21.32 and suggests shared genetic susceptibility with diffuse large B-cell lymphoma. PLoS Genet. 2011;7(4):e1001378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Skibola CF, Bracci PM, Halperin E, Conde L, Craig DW, Agana L, et al. Genetic variants at 6p21.33 are associated with susceptibility to follicular lymphoma. Nat Genet. 2009;41(8):873–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vijai J, Kirchhoff T, Schrader KA, Brown J, Dutra-Clarke AV, Manschreck C, et al. Susceptibility loci associated with specific and shared subtypes of lymphoid malignancies. PLoS Genet. 2013;9(1):e1003220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Skibola CF, Conde L, Foo J-N, Riby J, Humphreys K, Sillé FC, et al. A meta-analysis of genome-wide association studies of follicular lymphoma. BMC Genomics. 2012;13(1):516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Skibola Christine F, Berndt Sonja I, Vijai J, Conde L, Wang Z, Yeager M, et al. Genome-wide association study identifies five susceptibility loci for follicular lymphoma outside the HLA region. Am J Human Genet. 2014;95(4):462–71.

    Article  CAS  Google Scholar 

  20. Ekström Smedby K, Lindgren CM, Hjalgrim H, Humphreys K, Schöllkopf C, Chang ET, et al. Variation in DNA repair genes ERCC2, XRCC1, and XRCC3 and risk of follicular lymphoma. Cancer Epidemiol Biomark Prev. 2006;15(2):258–65.

    Article  CAS  Google Scholar 

  21. Boffetta P, de Vocht F. Occupation and the risk of non-Hodgkin lymphoma. Cancer Epidemiol Biomark Prev. 2007;16(3):369–72.

    Article  CAS  Google Scholar 

  22. Mester B, Nieters A, Deeg E, Elsner G, Becker N, Seidler A. Occupation and malignant lymphoma: a population based case control study in Germany. Occup Environ Med. 2006;63(1):17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cocco P, t’Mannetje A, Fadda D, Melis M, Becker N, de Sanjosé S, et al. Occupational exposure to solvents and risk of lymphoma subtypes: results from the Epilymph case–control study. Occup Environ Med. 2010;67(5):341–7.

    Article  CAS  PubMed  Google Scholar 

  24. Bethwaite PB, Pearce N, Fraser J. Cancer risks in painters: study based on the New Zealand Cancer Registry. Br J Ind Med. 1990;47(11):742–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lundberg I, Milatou-Smith R. Mortality and cancer incidence among Swedish paint industry workers with long-term exposure to organic solvents. Scand J Work Environ Health. 1998;24(4):270–5.

    Article  CAS  PubMed  Google Scholar 

  26. Chiu BC-H, Dave BJ, Blair A, Gapstur SM, Zahm SH, Weisenburger DD. Agricultural pesticide use and risk of t(14;18)-defined subtypes of non-Hodgkin lymphoma. Blood. 2006;108(4):1363–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schroeder JC, Olshan AF, Baric R, Dent GA, Weinberg CR, Yount B, et al. Agricultural risk factors for t(14;18) subtypes of non-Hodgkin’s lymphoma. Epidemiology. 2001;12(6):701–9.

    Article  CAS  PubMed  Google Scholar 

  28. Roulland S, Lebailly P, Lecluse Y, Briand M, Pottier D, Gauduchon P. Characterization of the t(14;18) BCL2-IGH translocation in farmers occupationally exposed to pesticides. Cancer Res. 2004;64(6):2264–9.

    Article  CAS  PubMed  Google Scholar 

  29. De Roos AJ, Davis S, Colt JS, Blair A, Airola M, Severson RK, et al. Residential proximity to industrial facilities and risk of non-Hodgkin lymphoma. Environ Res. 2010;110(1):70–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cozen W, Cerhan JR, Martinez-Maza O, Ward MH, Linet M, Colt JS, et al. The effect of atopy, childhood crowding, and other immune-related factors on non-Hodgkin lymphoma risk. Cancer Causes Control. 2007;18(8):821–31.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Holford TR, Leaderer B, Boyle P, Zahm SH, Owens PH, et al. Blood transfusion and risk of non-Hodgkin’s lymphoma in Connecticut women. Am J Epidemiol. 2004;160(4):325–30.

    Article  PubMed  Google Scholar 

  32. Cerhan JR, Wallace RB, Dick F, Kemp J, Parker AS, Zheng W, et al. Blood transfusions and risk of non-Hodgkin’s lymphoma subtypes and chronic lymphocytic leukemia. Cancer Epidemiol Biomark Prev. 2001;10(4):361–8.

    CAS  Google Scholar 

  33. Cerhan JR, Engels EA, Cozen W, Davis S, Severson RK, Morton LM, et al. Blood transfusion, anesthesia, surgery and risk of non-Hodgkin lymphoma in a population-based case-control study. Int J Cancer. 2008;123(4):888–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gibson TM, Morton LM, Shiels MS, Clarke CA, Engels EA. Risk of non-Hodgkin lymphoma subtypes in HIV-infected people during the HAART era: a population-based study. AIDS (London, England). 2014;28(15):2313–8.

    Article  CAS  Google Scholar 

  35. Clarke CA, Morton LM, Lynch C, Pfeiffer RM, Hall EC, Gibson TM, et al. Risk of lymphoma subtypes after solid organ transplantation in the United States. Br J Cancer. 2013;109(1):280–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Holly EA, Bracci PM. Population-based study of non-Hodgkin lymphoma, histology, and medical history among human immunodeficiency virus-negative participants in San Francisco. Am J Epidemiol. 2003;158(4):316–27.

    Article  PubMed  Google Scholar 

  37. Lankes HA, Fought AJ, Evens AM, Weisenburger DD, Chiu BCH. Vaccination history and risk of non-Hodgkin lymphoma: a population-based, case-control study. Cancer Causes Control: CCC. 2009;20(5):517–23.

    Article  PubMed  Google Scholar 

  38. Taborelli M, Montella M, Libra M, Tedeschi R, Crispo A, Grimaldi M, et al. The dose-response relationship between tobacco smoking and the risk of lymphomas: a case-control study. BMC Cancer. 2017;17:421.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Balasubramaniam G, Saoba S, Sarade M, Pinjare S. Case-control study of risk factors for non-Hodgkin lymphomain Mumbai, India. Asian Pac J Cancer Prev. 2013;14(2):775–80.

    Article  PubMed  Google Scholar 

  40. Morton LM, Hartge P, Holford TR, Holly EA, Chiu BCH, Vineis P, et al. Cigarette smoking and risk of non-Hodgkin lymphoma: a pooled analysis from the International Lymphoma Epidemiology Consortium (interlymph). Cancer Epidemiol Biomark Prev. 2005;14(4):925–33.

    Article  CAS  Google Scholar 

  41. Castillo JJ, Dalia S. Cigarette smoking is associated with a small increase in the incidence of non-Hodgkin lymphoma: a meta-analysis of 24 observational studies. Leuk Lymphoma. 2012;53(10):1911–9.

    Article  PubMed  Google Scholar 

  42. Morton LM, Holford TR, Leaderer B, Boyle P, Zahm SH, Zhang Y, et al. Cigarette smoking and risk of non-Hodgkin lymphoma subtypes among women. Br J Cancer. 2003;89(11):2087–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bell DA, Liu Y, Cortopassi GA. Occurrence of bcl-2 oncogene translocation with increased frequency in the peripheral blood of heavy smokers. J Natl Cancer Inst. 1995;87(3):223–4.

    Article  CAS  PubMed  Google Scholar 

  44. Troy JD, Hartge P, Weissfeld JL, Oken MM, Colditz GA, Mechanic LE, et al. Associations between anthropometry, cigarette smoking, alcohol consumption, and non-Hodgkin lymphoma in the prostate, lung, colorectal, and ovarian cancer screening trial. Am J Epidemiol. 2010;171(12):1270–81.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lim U, Morton LM, Subar AF, Baris D, Stolzenberg-Solomon R, Leitzmann M, et al. Alcohol, smoking, and body size in relation to incident Hodgkin’s and non-Hodgkin’s lymphoma risk. Am J Epidemiol. 2007;166(6):697–708.

    Article  PubMed  Google Scholar 

  46. Erber EMG, Lim U, Kolonel LN. Dietary vitamin D and risk of non-Hodgkin lymphoma: the multiethnic cohort. Br J Nutr. 2010;103(4):581–4.

    Article  CAS  PubMed  Google Scholar 

  47. Erber E, Maskarinec G, Gill JK, Park S-Y, Kolonel LN. Dietary patterns and the risk of non-Hodgkin lymphoma: the multiethnic cohort. Leuk Lymphoma. 2009;50(8):1269–75.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chang ET, Ekström Smedby K, Zhang SM, Hjalgrim H, Melbye M, Öst Å, et al. Dietary factors and risk of non-Hodgkin lymphoma in men and women. Cancer Epidemiol Biomark Prev. 2005;14(2):512–20.

    Article  Google Scholar 

  49. Frankenfeld CL, Cerhan JR, Cozen W, Davis S, Schenk M, Morton LM, et al. Dietary flavonoid intake and non-Hodgkin lymphoma risk. Am J Clin Nutr. 2008;87(5):1439–45.

    Article  CAS  PubMed  Google Scholar 

  50. Heinen MM, Verhage BAJ, Schouten LJ, Goldbohm RA, Schouten HC, van den Brandt PA. Alcohol consumption and risk of lymphoid and myeloid neoplasms: results of the Netherlands cohort study. Int J Cancer. 2013;133(7):1701–12.

    Article  CAS  PubMed  Google Scholar 

  51. Parodi S, Merlo FD, Stagnaro E. Coffee consumption and risk of non-Hodgkin’s lymphoma: evidence from the Italian multicentre case–control study. Cancer Causes Control. 2017;28(8):867–76.

    Article  PubMed  Google Scholar 

  52. Purdue MPHP, Davis S, Cerhan JR, Colt JS, Cozen W, et al. Sun exposure, vitamin D receptor gene polymorphisms and risk of non-Hodgkin lymphoma. Cancer Causes Control. 2007;18(9):989–99.

    Article  PubMed  Google Scholar 

  53. Skibola CF, Holly EA, Forrest MS, Hubbard A, Bracci PM, Skibola DR, et al. Body mass index, leptin and leptin receptor polymorphisms, and non-Hodgkin lymphoma. Cancer Epidemiol Biomark Prev. 2004;13(5):779–86.

    CAS  Google Scholar 

  54. Bertrand KA, Giovannucci E, Zhang SM, Laden F, Rosner B, Birmann BM. A prospective analysis of body size during childhood, adolescence, and adulthood and risk of non-Hodgkin lymphoma. Cancer Prev Res. 2013;6(8):864–73.

    Article  Google Scholar 

  55. Chang ET, Hjalgrim H, Smedby KE, Åkerman M, Tani E, Johnsen HE, et al. Body mass index and risk of malignant lymphoma in Scandinavian men and women. JNCI: J Natl Cancer Inst. 2005;97(3):210–8.

    Article  PubMed  Google Scholar 

  56. Pan SY, Mao Y, Ugnat A-M. Physical activity, obesity, energy intake, and the risk of non-Hodgkin’s lymphoma: a population-based case-control study. Am J Epidemiol. 2005;162(12):1162–73.

    Article  PubMed  Google Scholar 

  57. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu Q, Salaverria I, Pittaluga S, Jegalian AG, Xi L, Siebert R, et al. Follicular lymphomas in children and young adults: a comparison of the pediatric variant with usual follicular lymphoma. Am J Surg Pathol. 2013;37(3):333.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Louissaint A, Ackerman AM, Dias-Santagata D, Ferry JA, Hochberg EP, Huang MS, et al. Pediatric-type nodal follicular lymphoma: an indolent clonal proliferation in children and adults with high proliferation index and no BCL2 rearrangement. Blood. 2012;120(12):2395–404.

    Article  CAS  PubMed  Google Scholar 

  60. Siddiqi IN, Friedman J, Barry-Holson KQ, Ma C, Thodima V, Kang I, et al. Characterization of a variant of t(14;18) negative nodal diffuse follicular lymphoma with CD23 expression, 1p36/TNFRSF14 abnormalities, and STAT6 mutations. Modern Pathol. 2016;29(6):570–81.

    Article  CAS  Google Scholar 

  61. Tsujimoto Y, Gorham J, Cossman J, Jaffe E, Croce CM. The t (14; 18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science. 1985;229:1390–4.

    Article  CAS  PubMed  Google Scholar 

  62. Schüler F, Dölken L, Hirt C, Kiefer T, Berg T, Fusch G, et al. Prevalence and frequency of circulating t(14;18)-MBR translocation carrying cells in healthy individuals. Int J Cancer. 2009;124(4):958–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Roulland S, Lebailly P, Lecluse Y, Heutte N, Nadel B, Gauduchon P. Long-term clonal persistence and evolution of t(14;18)-bearing B cells in healthy individuals. Leukemia. 2005;20(1):158–62.

    Article  CAS  Google Scholar 

  64. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9(1):47–59.

    Article  CAS  PubMed  Google Scholar 

  65. Schraders M, de Jong D, Kluin P, Groenen P, van Krieken H. Lack of Bcl-2 expression in follicular lymphoma may be caused by mutations in theBCL2 gene or by absence of the t(14;18) translocation. J Pathol. 2005;205(3):329–35.

    Article  CAS  PubMed  Google Scholar 

  66. Roulland S, Kelly RS, Morgado E, Sungalee S, Solal-Celigny P, Colombat P, et al. t(14;18) Translocation: a predictive blood biomarker for follicular lymphoma. J Clin Oncol. 2014;32(13):1347–55.

    Article  PubMed  Google Scholar 

  67. Roulland S, Faroudi M, Mamessier E, Sungalee S, Salles G, Nadel B. Ch. 1/Early steps of follicular lymphoma pathogenesis. Adv Immunol. 2011;111:1–46.

    Article  CAS  PubMed  Google Scholar 

  68. Pasqualucci L, Bhagat G, Jankovic M, Compagno M, Smith P, Muramatsu M, et al. AID is required for germinal center–derived lymphomagenesis. Nat Genet. 2007;40(1):108–12.

    Article  PubMed  CAS  Google Scholar 

  69. Glas AM, Knoops L, Delahaye L, Kersten MJ, Kibbelaar RE, Wessels LA, et al. Gene-expression and immunohistochemical study of specific T-cell subsets and accessory cell types in the transformation and prognosis of follicular lymphoma. J Clin Oncol. 2007;25(4):390–8.

    Article  CAS  PubMed  Google Scholar 

  70. Irish JM, Czerwinski DK, Nolan GP, Levy R. Altered B-cell receptor signaling kinetics distinguish human follicular lymphoma B cells from tumor-infiltrating nonmalignant B cells. Blood. 2006;108(9):3135–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang Z-Z, Grote DM, Ziesmer SC, Niki T, Hirashima M, Novak AJ, et al. IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J Clin Investig. 2012;122(4):1271–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Clear AJ, Lee AM, Calaminici M, Ramsay AG, Morris KJ, Hallam S, et al. Increased angiogenic sprouting in poor prognosis FL is associated with elevated numbers of CD163+ macrophages within the immediate sprouting microenvironment. Blood. 2010;115(24):5053–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mourcin F, Pangault C, Amin-Ali R, Amé-Thomas P, Tarte K. Stromal cell contribution to human follicular lymphoma pathogenesis. Front Immunol. 2012;3:280.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Amé-Thomas P, Maby-El Hajjami H, Monvoisin C, Jean R, Monnier D, Caulet-Maugendre S, et al. Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood. 2007;109(2):693–702.

    Article  PubMed  CAS  Google Scholar 

  75. de Jong D, Fest T. The microenvironment in follicular lymphoma. Best Pract Res Clin Haematol. 2011;24(2):135–46.

    Article  PubMed  CAS  Google Scholar 

  76. Kridel R, Sehn LH, Gascoyne RD. Can histologic transformation of follicular lymphoma be predicted and prevented? Blood. 2017;130(3):258–66.

    Article  CAS  PubMed  Google Scholar 

  77. Sander B, de Jong D, Rosenwald A, Xie W, Balague O, Calaminici M, et al. The reliability of immunohistochemical analysis of the tumor microenvironment in follicular lymphoma: a validation study from the Lunenburg Lymphoma Biomarker Consortium. Haematologica. 2014;99(4):715–25.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhu D, McCarthy H, Ottensmeier CH, Johnson P, Hamblin TJ, Stevenson FK. Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood. 2002;99(7):2562–8.

    Article  CAS  PubMed  Google Scholar 

  79. Amin R, Mourcin F, Uhel F, Pangault C, Ruminy P, Dupre L, et al. DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma. Blood. 2015;126(16):1911–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ghia P, Nadel B, Sander B, Stamatopoulos K, Stevenson FK. Early stages in the ontogeny of small B-cell lymphomas: genetics and microenvironment. J Int Med. 2017;282(5):395–414.

    Article  CAS  Google Scholar 

  81. Cong P, Raffeld M, Teruya-Feldstein J, Sorbara L, Pittaluga S, Jaffe ES. In situ localization of follicular lymphoma: description and analysis by laser capture microdissection. Blood. 2002;99(9):3376–82.

    Article  CAS  PubMed  Google Scholar 

  82. Jegalian AG, Eberle FC, Pack SD, Mirvis M, Raffeld M, Pittaluga S, et al. Follicular lymphoma in situ: clinical implications and comparisons with partial involvement by follicular lymphoma. Blood. 2011;118(11):2976–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Montes-Moreno S, Castro Y, Rodríguez-Pinilla SM, García JF, Mollejo M, Castillo ME, et al. Intrafollicular neoplasia/in situ follicular lymphoma: review of a series of 13 cases. Histopathology. 2010;56(5):658–62.

    Article  PubMed  Google Scholar 

  84. Wartenberg M, Vasil P, Bueschenfelde CMZ, Ott G, Rosenwald A, Fend F, et al. Somatic hypermutation analysis in follicular lymphoma provides evidence suggesting bidirectional cell migration between lymph node and bone marrow during disease progression and relapse. Haematologica. 2013;98(9):1433–41.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kluin PM. Origin and migration of follicular lymphoma cells. Haematologica. 2013;98(9):1331–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Weigert O, Kopp N, Lane AA, Yoda A, Dahlberg SE, Neuberg D, et al. Molecular ontogeny of donor-derived follicular lymphomas occurring after hematopoietic cell transplantation. Cancer Discov. 2012;2(1):47–55.

    Article  PubMed  Google Scholar 

  87. Green MR, Gentles AJ, Nair RV, Irish JM, Kihira S, Liu CL, et al. Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. Blood. 2013;121(9):1604–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kridel R, Mottok A, Farinha P, Ben-Neriah S, Ennishi D, Zheng Y, et al. Cell of origin of transformed follicular lymphoma. Blood. 2015;126(18):2118–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Yoon Cheah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ng, Z.Y., Leslie, C., Cheah, C.Y. (2020). Follicular Lymphoma: Epidemiology, Pathogenesis and Initiating Events. In: Fowler, N. (eds) Follicular Lymphoma. Springer, Cham. https://doi.org/10.1007/978-3-030-26211-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26211-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26210-5

  • Online ISBN: 978-3-030-26211-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics