Skip to main content

A Simple Local Search Gives a PTAS for the Feedback Vertex Set Problem in Minor-Free Graphs

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11653))

Included in the following conference series:

  • 906 Accesses

Abstract

We show that a simple local search gives a PTAS for the Feedback Vertex Set (FVS) problem in minor-free graphs. An efficient PTAS in minor-free graphs was known for this problem by Fomin, Lokshtanov, Raman and Sauraubh [13]. However, their algorithm is a combination of many advanced algorithmic tools such as contraction decomposition framework introduced by Demaine and Hajiaghayi [10], Courcelle’s theorem [9] and the Robertson and Seymour decomposition [29]. In stark contrast, our local search algorithm is very simple and easy to implement. It keeps exchanging a constant number of vertices to improve the current solution until a local optimum is reached. Our main contribution is to show that the local optimum only differs the global optimum by \((1+\epsilon )\) factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A polynomial-time approximation scheme for a minimization problem is an algorithm that, given a fixed constant \(\epsilon > 0\), runs in polynomial time and returns a solution within \(1 +\epsilon \) of optimal.

  2. 2.

    A PTAS is efficient if the running time is of the form \(2^{\mathrm {poly}(1/\epsilon )}n^{O(1)}\).

  3. 3.

    For k-means and k-median, the exchange graph is constructed from \(\textsc {L}\) and a nearly optimal solution \(\textsc {O}'\), which is obtained by removing some vertices of \(\textsc {O}\).

References

  1. Alon, N., Seymour, P.D., Thomas, R.: A separator theorem for nonplanar graphs. J. Am. Math. Soc. 3(4), 801–808 (1990)

    Article  MathSciNet  Google Scholar 

  2. Antunes, D., Mathieu, C., Mustafa, N.H.: Combinatorics of local search: an optimal 4-local Hall’s theorem for planar graphs. In: 25th Annual European Symposium on Algorithms (ESA 2017), vol. 87, pp. 8:1–8:13 (2017)

    Google Scholar 

  3. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM J. Discrete Math. 12(3), 289–297 (1999)

    Article  MathSciNet  Google Scholar 

  4. Becker, A., Geiger, D.: Optimization of Pearl’s method of conditioning and greedy-like approximation algorithms for the vertex feedback set problem. Artif. Intell. 83(1), 167–188 (1996)

    Article  MathSciNet  Google Scholar 

  5. Cabello, S., Gajser, D.: Simple PTAS’s for families of graphs excluding a minor. Discrete Appl. Math. 189(C), 41–48 (2015)

    Article  MathSciNet  Google Scholar 

  6. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. In: Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry, SocG 2009, pp. 333–340 (2009)

    Google Scholar 

  7. Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation schemes for \(k\)-means and \(k\)-median in Euclidean and minor-free metrics. In: Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2016 (2016)

    Google Scholar 

  8. Cohen-Addad, V., de Verdière, É.C., Klein, P.N., Mathieu, C., Meierfrankenfeld, D.: Approximating connectivity domination in weighted bounded-genus graphs. In: Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, pp. 584–597. ACM (2016)

    Google Scholar 

  9. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  Google Scholar 

  10. Demaine, E.D., Hajiaghayi, M.: Bidimensionality: new connections between FPT algorithms and PTASs. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pp. 590–601 (2005)

    Google Scholar 

  11. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann. Math. 162(1), 439–485 (2005)

    Article  MathSciNet  Google Scholar 

  12. Even, G., Naor, J., Schieber, B., Zosin, L.: Approximating minimum subset feedback sets in undirected graphs with applications. SIAM J. Discrete Math. 13(2), 255–267 (2000)

    Article  MathSciNet  Google Scholar 

  13. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Bidimensionality and EPTAS. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp. 748–759 (2011)

    Google Scholar 

  14. Frederickson, G.: Fast algorithms for shortest paths in planar graphs with applications. SIAM J. Comput. 16, 1004–1022 (1987)

    Article  MathSciNet  Google Scholar 

  15. Gilbert, J.R., Hutchinson, J.P., Tarjan, R.E.: A separator theorem for graphs of bounded genus. J. Algorithms 5(3), 391–407 (1984)

    Article  MathSciNet  Google Scholar 

  16. Har-Peled, S., Quanrud, K.: Approximation algorithms for polynomial-expansion and low-density graphs. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 717–728. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_60

    Chapter  MATH  Google Scholar 

  17. Johnson, D.S.: The NP-completeness column: an ongoing guide (column 19). J. Algorithms 8(3), 438–448 (1987)

    Article  MathSciNet  Google Scholar 

  18. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. IRSS, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  19. Kleinberg, J., Kumar, A.: Wavelength conversion in optical networks. J. Algorithms 38, 25–50 (2001)

    Article  MathSciNet  Google Scholar 

  20. Kostochka, A.V.: The minimum hadwiger number for graphs with a given mean degree of vertices. Metody Diskretnogo Analiza 38, 37–58 (1982). (in Russian)

    MathSciNet  MATH  Google Scholar 

  21. Kostochka, A.V.: Lower bound of the hadwiger number of graphs by their average degree. Combinatorica 4(4), 307–316 (1984)

    Article  MathSciNet  Google Scholar 

  22. Lipton, R., Tarjan, R.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)

    Article  MathSciNet  Google Scholar 

  23. Michiels, W., Aarts, E., Korst, J.: Theoretical Aspects of Local Search. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  24. Mohar, B.: A linear time algorithm for embedding graphs in an arbitrary surface. SIAM J. Discrete Math. 12(1), 6–26 (1999)

    Article  MathSciNet  Google Scholar 

  25. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discrete Comput. Geom. 44(4), 883–895 (2010)

    Article  MathSciNet  Google Scholar 

  26. Bus, N., Garg, S., Mustafa, N.H., Ray, S.: Limits of local search: quality and efficiency. Discrete Comput. Geom. 57(3), 607–624 (2017)

    Article  MathSciNet  Google Scholar 

  27. Qin, S., Zhou, H.: Solving the undirected feedback vertex set problem by local search. Eur. Phys. J. B 87(11), 273 (2014)

    Article  Google Scholar 

  28. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory Ser. B 35(1), 39–61 (1983)

    Article  MathSciNet  Google Scholar 

  29. Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph. J. Comb. Theory Ser. B 89(1), 43–76 (2003)

    Article  MathSciNet  Google Scholar 

  30. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, pp. 253–264. ACM (1978)

    Google Scholar 

  31. Zhang, Z., Ye, A., Zhou, X., Shao, Z.: An efficient local search for the feedback vertex set problem. Algorithms 6(4), 726–746 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

We thank the anonymous reviewer who pointed out an error in our argument to bound the size of the exchange graph. This material is based upon work supported by the National Science Foundation under Grant No. CCF-1252833. This work was done while the first author was at Oregon State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le, H., Zheng, B. (2019). A Simple Local Search Gives a PTAS for the Feedback Vertex Set Problem in Minor-Free Graphs. In: Du, DZ., Duan, Z., Tian, C. (eds) Computing and Combinatorics. COCOON 2019. Lecture Notes in Computer Science(), vol 11653. Springer, Cham. https://doi.org/10.1007/978-3-030-26176-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26176-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26175-7

  • Online ISBN: 978-3-030-26176-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics