Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 243))

  • 254 Accesses

Abstract

In this paper, using adequate variational techniques, mainly based on Ekeland’s variational principle, we will establish the existence of a continuous family of eigenvalues for problems driven by the fractional p(x)-Laplacian operator \((-\varDelta _{p(x)})^{s}\), with homogenous Dirichlet boundary conditions. More precisely, we show that there exists \(\lambda ^{*}>0\), such that for all \(\lambda \in (0,\lambda ^{*})\) is an eigenvalue of the problem

$$(\mathscr {P}_{ s})~~ \left\{ \begin{array}{llllll} \ (-\varDelta _{p(x)})^{s}u(x) &{} &{} =\lambda |u(x)|^{r(x)-2}u(x)&{}in&{} ~\varOmega ,\\ \\ \qquad \qquad \qquad u&{}&{}=0 &{}in&{} ~\mathbb {R}^{N}\setminus \varOmega , \end{array} \right. $$

where \(\varOmega \) is a bounded open set of \( \mathbb {R}^{N} \), \(\lambda >0\), p and r are a continuous variable exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Applebaum, D.: Lévy processes and stochastic calculus. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  2. Bahrouni, A.: Comparison and sub-supersolution principles for the fractional \(p(x)\)-Laplacian. J. Math. Anal. Appl. 458, 1363–1372 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Bahrouni, A., Rădulescu, V.: On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discret. Contin. Dyn. Syst. 11, 379–389 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bisci, G.M., Rădulescu, V., Servadi, R.: Variational Methods for Nonlocal Fractional Problems. Encyclopedia of mathematics and its applications. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  5. Bucur, C., Valdinoci, E.: Non Local Diffusion and Application. Lecture Notes of the Unione Matematica Italiana. Springer, Switzerland (2016)

    Book  MATH  Google Scholar 

  6. Caffarelli, L.: Nonlocal diffusions, drifts and games. In: Equations, Nonlinear Partial Differential (ed.) Abel Symposia, vol. 7, pp. 37–52. Springer, Berlin (2012)

    Google Scholar 

  7. Del Pezzo, L.M., Rossi, J.D.: Traces for fractional Sobolev spaces with variable exponents. Adv. Oper. Theory 2, 435–446 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fan, X.L.: Remarks on eigenvalue problems involving the p(x)-Laplacian. J. Math. Anal. Appl. 352, 85–98 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fan, X.L., Zhang, Q.H.: Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem. Nonlinear Anal. 52, 1843–1852 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Fan, X.L., Zhang, Q., Zhao, D.: Eigenvalues of p(x)-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302, 306–317 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fan, X.L., Zhao, D.: On the Spaces \(L^{p(x)}(\Omega )\) and \(W^{m, p(x)}(\Omega )\). J. Math. Anal. Appl 263, 424–446 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Kaufmann, U., Rossi, J.D., Vidal, R.: Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians. Electr. J. Qual. Theory Differ. Equ. 76, 1–10 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Kováčik, O., Rákosník, J.: On Spaces \(L^{p(x)}(\Omega )\) and \(W^{m, p(x)}(\Omega )\). Czechoslov. Math. J. 41(4), 592–618 (1991)

    MATH  Google Scholar 

  15. Mihăilescu, M., Rădulescu, V.D.: Continuous spectrum for a class of nonhomogeneous differentials operators. Manuscripta Math. 125(2), 157–167 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mihăilescu, M., Rădulescu, V.D.: On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proc. Am. Math. Soc. 135(9), 2929–2937 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mihăilescu, M., Stancu-Dumitru, D.: On an eigenvalue problem involving the p(x)-Laplace operator plus a nonlocal term. Differ. Equ. Appl. 1(3), 367–378 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics, vol. 65. American Mathematical Society, Providence (1986)

    Book  MATH  Google Scholar 

  19. Rădulescu, V.D., Repovš, D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis. Monographs and Research Notes in Mathematics. CRC Press, Taylor and Francis Group, Boca Raton (2015)

    Book  MATH  Google Scholar 

  20. Servadei, R., Valdinoci, E.: Variational methods for nonlocal operators of elliptic type. Discret. Contin. Dyn. Syst. 33(5), 2105–2137 (2013)

    MATH  Google Scholar 

  21. Servadei, R., Valdinoci, E.: Mountain pass solutions for nonlocal elliptic operators. J. Math. Anal. Appl. 389(2), 887–898 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Servadei, R., Valdinoci, E.: Weak and viscosity solutions of the fractional Laplace equation. Publ. Mat. 58, 133–154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shuzhong, S.: Ekeland’s variational principle and the mountain pass lemma. Acta Math Sin 1, 348–355 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Shimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azroul, E., Benkirane, A., Shimi, M. (2020). Ekeland’s Variational Principle for the Fractional p(x)-Laplacian Operator. In: Zerrik, E., Melliani, S., Castillo, O. (eds) Recent Advances in Modeling, Analysis and Systems Control: Theoretical Aspects and Applications. Studies in Systems, Decision and Control, vol 243. Springer, Cham. https://doi.org/10.1007/978-3-030-26149-8_12

Download citation

Publish with us

Policies and ethics