Skip to main content

Quantum Effects, CNTs, Fullerenes and Dendritic Structures

  • Chapter
  • First Online:
Nanostructured Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 667 Accesses

Abstract

Nanostructural materials have wide classification of structures based on their fabrication methods. Fullerenes are close-caged molecules containing only hexagonal and pentagonal interatomic bonding networks. Carbon nanotubes are large, linear fullerenes with aspect ratios as large as 103–105. Nanotubes as many derivatives like nanocones, nanosprings, etc. The chapter detailed about different nanostructures and its properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopez AM, Alonso AM, Prato M (2011) Materials chemistry of fullerene C60 derivatives. J Mater Chem 21:1305–1318

    Article  Google Scholar 

  2. Yanilkin VV, Gubskaya VP, Morozov VI et al (2003) Electrochemistry of fullerenes and their derivatives. Russ J Electrochem 39:1147–1165

    Article  CAS  Google Scholar 

  3. Prato M, Maggini M (1998) Fulleropyrrolidines: a family of full-fledged fullerene derivatives. Acc Chem Res 31:519–526

    Article  CAS  Google Scholar 

  4. Denis PA (2018) On the estimation of the strength of supramolecular complexes of fullerenes. Int J Quantum Chem 25670:1–5

    Google Scholar 

  5. Alonso AM, Tagmatarchis N, Prato M (2006) Fullerenes and their derivatives. Nanomaterials handbook. Taylor & Francis Group, LLC, New York, p 40–79

    Google Scholar 

  6. Huang Y, Duan X, Wei Q (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291:630–633

    Article  CAS  Google Scholar 

  7. Cao G, Wang Y (2004) One-dimensional nanostructures: nanowires and nanorods. Nanostructures and nanomaterials. Imperial College Press, London, pp 110–172

    Google Scholar 

  8. Duan X, Lieber CM (2000) Laser-assisted catalytic growth of single crystal GaN nanowires. J Am Chem Soc 122:188–189

    Article  CAS  Google Scholar 

  9. Ren Z, Guo Y, Liu CH et al (2013) Hierarchically nanostructured materials for sustainable environmental applications. Front Chem 1:1–22

    Google Scholar 

  10. Li J, Wang D, LaPierre RR (2011) Advances in III-V semiconductor nanowires and nanodevices. https://doi.org/10.2174/97816080505291110101

    Google Scholar 

  11. Wang ZL (2004) Mechanical properties of nanowires and nanobelts. Dekker encyclopedia of nanoscience and nanotechnology. Marcel Dekker, Inc., New York

    Google Scholar 

  12. Liu S, Sun N, Liu M et al (2018) Nanostructured SnSe: synthesis, doping, and thermoelectric properties. J Appl Phys 123:115109–115115

    Article  Google Scholar 

  13. Huang Q, Lilley CM, Bode M et al (2008) Electrical properties of Cu nanowires. In: IEEE conference on nanotechnology. https://doi.org/10.1109/nano.2008.163

  14. Bauer J, Fleischer F, Breitenstein O et al (2007) Electrical properties of nominally undoped silicon nanowires grown by molecular-beam epitaxy. Appl Phys Lett 90:012105–012108

    Article  Google Scholar 

  15. Joyce HJ, Boland JL, Davies CL et al (2016) A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy. Semicond Sci Tech 31:103003–103023

    Article  Google Scholar 

  16. Spanier JE (2006) One-dimensional semiconductor and oxide nanostructures. Nanomaterials Handbook. Taylor & Francis Group, LLC, New York, pp 294–327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Daniel Thangadurai .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thangadurai, T.D., Manjubaashini, N., Thomas, S., Maria, H.J. (2020). Quantum Effects, CNTs, Fullerenes and Dendritic Structures. In: Nanostructured Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-26145-0_5

Download citation

Publish with us

Policies and ethics