Connecting Gripping Mechanism Based on Iris Diaphragm for Modular Autonomous Robots

  • Nikita PavliukEmail author
  • Petr Smirnov
  • Artem Kondratkov
  • Andrey Ronzhin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11659)


In this work, homogeneous gripping mechanical devices for connecting small-sized modular autonomous robots are described. The review of solutions of gripping and holding industrial mechanisms, and robotic switching mechanisms, as well as docking devices of space vehicles is given. The design of the connecting gripping mechanism of Mobile Autonomous Reconfigurable System (MARS) for coaxial conjugation of robots is proposed and it works in conjunction and passive modes to form modular structures. In the passive state, the working body of the mechanism forms a geometrical figure, which is suitable for connecting with identical device. In this case working body opens gripping mechanism and capture similar mechanism in the passive state. The proposed mechanism is based on the iris diaphragm, which prevents the uncontrolled displacement of the working body and stops the mechanism. It excludes the accidental rotation around the axis of the autonomous unit during operation in the formed structure. Infrared sensors (IR) were used for the concentric alignment of the axes of the connection devices. Sensors of this type estimate the distance and deflection angle of the opposed mechanism.


Modular robot Gripping device Autonomous robot MARS 



This work is supported by the Russian Foundation for Basic Research № 16-29-04101.


  1. 1.
    ECKO GRIPPER DATASHEET, pp. 1–4 (2018)Google Scholar
  2. 2.
    Ukrazhenko, K.A., Anchevskij, Yu.V., Kulebyakin, A.A., Toropov, A.Yu.: Zahvatnye ustrojstva promyshlennyh robotov [Gripping devices of industrial robots]. Yaroslavl State Technical University (YSTU), Yaroslavl (2007)Google Scholar
  3. 3.
    Vinogradov D.V., Lykosova E.S.: Patrony kulachkovye rychazhnye. Osnovnye tipy i razmery [Cam levers. Basic types and sizes]. Engineering Bulletin 10 (2013)Google Scholar
  4. 4.
    Pavliuk, N.A., Krestovnikov, K.D., Pykhov, D., Budkov, V.: Construction and principles of the functioning of the magneto-mechanical connector of the module a mobile autonomous reconfigurable system. Problemele energeticii regionale 1(36), 117–129 (2018)Google Scholar
  5. 5.
    Jorgensen, M.W., Ostergaard, E.H., Lund, H.H.: Modular ATRON: modules for a self-reconfigurable robot. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2, pp. 2068–2073. IEEE (2004)Google Scholar
  6. 6.
    Chennareddy, S., Agrawal, A., Karuppiah, A.: Modular self-reconfigurable robotic systems: a survey on hardware architectures. J. Robot. 19, 1–19 (2017)Google Scholar
  7. 7.
    Clapaud, A.: Can KEYi Technology finalize his cell robot CellRobot in 2016? 4REVOLUTION.
  8. 8.
    Sproewitz, A., Billard, A., et al.: Roombots-mechanical design of self-reconfiguring modular robots for adaptive furniture. In: 2009 IEEE International Conference on Robotics and Automation, pp. 4259–4264. IEEE (2009)Google Scholar
  9. 9.
    Spröwitz, A., Moeckel, R., Vespignani, M., Bonardi, S., Ijspeert, A.J.: Roombots: a hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot. Robot. Auton. Syst. 62(7), 1016–1033 (2014)CrossRefGoogle Scholar
  10. 10.
    Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-TRAN: Self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7(4), 431–441 (2002)CrossRefGoogle Scholar
  11. 11.
    Trushlyakov, V.I., Yutkin, E.A.: Obzor sredstv stykovki i zahvata ob”ektov krupnogabaritnogo kosmicheskogo musora [Overview of the means of docking and capture of large space debris.]. Omskij nauchnyj vestnik [Omsk Scientific Herald] 2(120) (2013)Google Scholar
  12. 12.
    Iofis, E.A.: Fotokinotekhnika [Photo kinotekhnika]. Soviet encyclopedia, 265–447 (1981)Google Scholar
  13. 13.
    Ershov K.G.: Kinos”yomochnaya tekhnika [Filming]. Provornov, S.M. Mashinostroenie, Leningrad (1988)Google Scholar
  14. 14.
    Otenij, Ya.N., Ol’shtynskij, P.V.: Vybor i raschet zahvatnyh ustrojstv promyshlennyh robotov [Selection and calculation of professional devices of industrial robots]. Politekhnik, Volgograd (2000)Google Scholar
  15. 15.
    Shishigin D.S.: On Choosing the Technology of Application Software Integration with a CAD-System. SPIIRAS Proc. 4(47) (2016)CrossRefGoogle Scholar
  16. 16.
    Fraden, J.: Handbook of modern sensors: physics, designs, and applications. Anal. Bioanal. Chem. 382(1), 8–9 (2004)Google Scholar
  17. 17.
    Kashkarov, A.: Datchiki v elektronnyh skhemah: ot prostogo k slozhnomu [Sensors in electronic circuits. From simple to complex]. DMK press, Moscow (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS)St. PetersburgRussia
  2. 2.Department of Electromechanics and RoboticsSUAISaint-PetersburgRussia

Personalised recommendations