Advertisement

Household Objects Pick and Place Task for AR-601M Humanoid Robot

  • Kamil Khusnutdinov
  • Artur Sagitov
  • Ayrat Yakupov
  • Roman LavrenovEmail author
  • Edgar A. Martinez-Garcia
  • Kuo-Hsien Hsia
  • Evgeni Magid
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11659)

Abstract

Humanoid robots are created to facilitate many facets of daily life, both in scenarios when humans and robots collaborate and when robot completely replaces human. One of such more important cases is the household assistance for older people. When a robot operates in home environments the needs to interact with various household objects, of different shape and size. A humanoid end-effector is typically modeled to have from two to five configuration of fingers designed specifically for grasping. By making fingers flexible and using dexterous arm one could operate objects in many different configurations. If one chooses to provide a finger control by actuating each of the finger’s phalanxes by using separate motor, humanoid hand becomes costly and overall size of the hand will significantly increase to accommodate necessary hardware and wiring. To address this issue, many engineers prefer to employ mimic joints to reduce a cost and size, while keeping acceptable levels of finger’s dexterity. This paper presents a study on household objects pick and place task being implemented for AR-601M humanoid robot that is using mimic joints in his fingers. Experiments were conducted in a Gazebo simulation with 5 model objects, which were created to be representations of real typical household items.

Keywords

Grasping Grasp planning algorithm Pick and place task Humanoid robot Mimic joint Gazebo simulation Grasp modelling 

Notes

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (RFBR), project ID 19-58-70002.

References

  1. 1.
    Ahmad, H., Yao, X., Muddassir, M., Chiragh, J., Ali, Y.: Humanoid robots object grasping and manipulation learning by demonstration. In: 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), pp. 158–161, April 2017.  https://doi.org/10.1109/ICCAR.2017.7942678
  2. 2.
    Beeson, P., Ames, B.: TRAC-IK: an open-source library for improved solving of generic inverse kinematics. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), November 2015.  https://doi.org/10.1109/HUMANOIDS.2015.7363472
  3. 3.
    Bonilla, M., et al.: Grasping with soft hands. In: 2014 IEEE-RAS International Conference on Humanoid Robots 2015, pp. 581–587, February 2015.  https://doi.org/10.1109/HUMANOIDS.2014.7041421
  4. 4.
    Cai, M., Kitani, K., Sato, Y.: Understanding hand-object manipulation with grasp types and object attributes. In: Robotics Conference: Science and Systems 2016, June 2016.  https://doi.org/10.15607/RSS.2016.XII.034
  5. 5.
    Caron, S., Kheddar, A., Tempier, O.: Stair climbing stabilization of the HRP-4 humanoid robot using whole-body admittance control. In: IEEE International Conference on Robotics and Automation, September 2018Google Scholar
  6. 6.
    Coleman, D., Sucan, I., Chitta, S., Correll, N.: Reducing the barrier to entry of complex robotic software: a MoveIt! case study. CoRR, April 2014Google Scholar
  7. 7.
    Cordella, F., Zollo, L., Salerno, A., Accoto, D., Guglielmelli, E., Siciliano, B.: Human hand motion analysis and synthesis of optimal power grasps for a robotic hand. Int. J. Adv. Robot. Syst. 11(3), 37 (2014).  https://doi.org/10.5772/57554CrossRefGoogle Scholar
  8. 8.
    Corke, P.I.: Robotics, Vision & Control: Fundamental Algorithms in MATLAB, 2nd edn. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-54413-7. ISBN 978-3-319-54412-0CrossRefzbMATHGoogle Scholar
  9. 9.
    Diankov, R., Kuffner, J.: OpenRAVE: a planning architecture for autonomous robotics. Technical report CMU-RI-TR-08-34, Carnegie Mellon University, Pittsburgh, PA, July 2008Google Scholar
  10. 10.
    Fischinger, D., Vincze, M., Jiang, Y.: Learning grasps for unknown objects in cluttered scenes. In: 2013 IEEE International Conference on Robotics and Automation, pp. 609–616, May 2013.  https://doi.org/10.1109/ICRA.2013.6630636
  11. 11.
    Gomilko, S., Zhulaeva, D., Rimer, D., Yakushin, D., Mescheryakov, R., Shandarov, E.: Robot soccer team for RoboCup humanoid kidsize league. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2016. LNCS (LNAI), vol. 9812, pp. 181–188. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-43955-6_22CrossRefGoogle Scholar
  12. 12.
    Hernandez, C., et al.: Team delft’s robot winner of the Amazon picking challenge 2016. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 613–624. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68792-6_51CrossRefGoogle Scholar
  13. 13.
    Kawamura, S., Svinin, M. (eds.): Advances in Robot Control. Springer, Berlin Heidelberg (2006).  https://doi.org/10.1007/978-3-540-37347-6CrossRefGoogle Scholar
  14. 14.
    Khusainov, R., Sagitov, A., Klimchik, A., Magid, E.: Arbitrary trajectory foot planner for bipedal walking. In: Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2017, Madrid, Spain, 26–28 July 2017, vol. 2, pp. 417–424 (2017).  https://doi.org/10.5220/0006442504170424
  15. 15.
    Li, H., Liu, W., Kawashima, K.: Development of a human-arm like laparoscopic instrument. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 68–70, December 2016.  https://doi.org/10.1109/ROBIO.2016.7866299
  16. 16.
    Magid, E., Sagitov, A.: Towards robot fall detection and management for Russian humanoid AR-601. In: Jezic, G., Kusek, M., Chen-Burger, Y.-H.J., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2017. SIST, vol. 74, pp. 200–209. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-59394-4_20CrossRefGoogle Scholar
  17. 17.
    Murooka, M., Nozawa, S., Kakiuchi, Y., Okada, K., Inaba, M.: Whole-body pushing manipulation with contact posture planning of large and heavy object for humanoid robot. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5682–5689. IEEE (2015)Google Scholar
  18. 18.
    Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Full DOF tracking of a hand interacting with an object by modeling occlusions and physical constraints. In: 2011 International Conference on Computer Vision, pp. 2088–2095, November 2011.  https://doi.org/10.1109/ICCV.2011.6126483
  19. 19.
    Roa, M., J. Argus, M., Leidner, D., Borst, C., Hirzinger, G.: Power grasp planning for anthropomorphic robot hands. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 563–569, May 2012.  https://doi.org/10.1109/ICRA.2012.6225068
  20. 20.
    Romay, A., Kohlbrecher, S., Conner, D.C., von Stryk, O.: Achieving versatile manipulation tasks with unknown objects by supervised humanoid robots based on object templates. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 249–255, November 2015.  https://doi.org/10.1109/HUMANOIDS.2015.7363543
  21. 21.
    Sahbani, A., El-Khoury, S., Bidaud, P.: An overview of 3d object grasp synthesis algorithms. Robot. Auton. Syst. 60, 326–336 (2012).  https://doi.org/10.1016/j.robot.2011.07.016CrossRefGoogle Scholar
  22. 22.
    Stasse, O., Flayols, T.: An overview of humanoid robots technologies. In: Venture, G., Laumond, J.-P., Watier, B. (eds.) Biomechanics of Anthropomorphic Systems. STAR, vol. 124, pp. 281–310. Springer, Cham (2019).  https://doi.org/10.1007/978-3-319-93870-7_13CrossRefGoogle Scholar
  23. 23.
    Odhner, L.U., Dollar, A.M.: Stable, open-loop precision manipulation with underactuated hands. Int. J. Robot. Res. 34, (2015).  https://doi.org/10.1177/0278364914558494CrossRefGoogle Scholar
  24. 24.
    Odhner, L.U., Ma, R., Dollar, A.M.: Open-loop precision grasping with underactuated hands inspired by a human manipulation strategy. IEEE Trans. Autom. Sci. Eng. 10, 625–633 (2013).  https://doi.org/10.1109/TASE.2013.2240298CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Higher Institute for Information Technology and Intelligent Systems (ITIS)Kazan Federal UniversityKazanRussian Federation
  2. 2.Universidad Autonoma de Ciudad JuarezCd. JuarezMexico
  3. 3.Department of Electrical EngineeringFar East UniversityXinshi District, Tainan CityTaiwan

Personalised recommendations