Bivand RS, Pebesma EJ, Gomez-Rubio V (2008) Applied spatial data analysis with R. Use R series, Springer, New York. https://doi.org/10.1007/978-1-4614-7618-4
CrossRef
Google Scholar
Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York. https://doi.org/10.1007/b97636
CrossRef
Google Scholar
Carlyle-Moses DE, Lishman CE, McKee AJ (2014) A preliminary evaluation of throughfall sampling techniques in a mature coniferous forest. J For Res 25:407–413. https://doi.org/10.1007/s11676-014-0468-8
CrossRef
Google Scholar
Chenouri S, Small CG (2012) A nonparametric multivariate multisample test based on data depth. Electron J Stat 6:760–782. https://doi.org/10.1214/12-EJS692
CrossRef
Google Scholar
Daszykowski M, Kaczmarek K, Vander Heyden Y, Walczak B (2007) Robust statistics in data analysis – a review. basic concepts Chemometrics Intell Lab Syst 85:203–219. https://doi.org/10.1016/j.chemolab.2006.06.016
CrossRef
Google Scholar
Dytham C (2006) Choosing and using statistics: a biologist’s guide. 2nd edn (Repr.), Blackwell Publishing., Malden, p 248
Google Scholar
Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:027–046. https://doi.org/10.1111/j.1600-0587.2012.07348.x
CrossRef
Google Scholar
Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage Publications, Thousand Oaks. http://tinyurl.com/carbook
Google Scholar
Freckleton RP (2011) Dealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement error. Behav Ecol Sociobiol 65:91–101. https://doi.org/10.1007/s00265-010-1045-6
CrossRef
Google Scholar
Frischbier N (2012) Study on the single-tree related small-scale variability and quantity-dependent dynamics of net forest precipitation using the example of two mixed beech-spruce stands. TUDpress, Dresden. (Dissertation). http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-94870
Frischbier N, Wagner S (2015) Detection, quantification and modelling of small-scale lateral translocation of throughfall in tree crowns of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) karst.). J Hydrol 522:228–238. https://doi.org/10.1016/j.jhydrol.2014.12.034
CrossRef
Google Scholar
Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211. https://doi.org/10.2307/1942661
CrossRef
Google Scholar
Joliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Phil Trans R Soc A 374:20150202. https://doi.org/10.1098/rsta.2015.0202
CrossRef
Google Scholar
Kallenberg O (2002) Foundations of modern probability, 2nd edn. Springer, New York, p 638
CrossRef
Google Scholar
Keim RF, Skaugset AE, Weiler M (2005) Temporal persistence of spatial patterns in throughfall. J Hydrol 314:263–274. https://doi.org/10.1016/j.jhydrol.2005.03.021
CrossRef
Google Scholar
Pinheiro J, Bates D (2010) Mixed-effects models in S and S-PLUS. Springer, Dordrecht. ISBN: 9781441903181. https://doi.org/10.1007/b98882
CrossRef
Google Scholar
Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Repr. With corr. 2003. Cambridge University Press, Cambridge, p 537
Google Scholar
Schielzeth H, Forstmeier W (2009) Conclusions beyond support: overconfident estimates in mixed models. Behav Ecol 20:416–420. https://doi.org/10.1093/beheco/arn145
CrossRef
Google Scholar
Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113. https://doi.org/10.1111/j.2041-210X.2010.00012.x
CrossRef
Google Scholar
Schielzeth H, Nakagawa S (2013) Nested by design: model fitting and interpretation in a mixed model era. Methods Ecol Evol 4:14–24. https://doi.org/10.1111/j.2041-210x.2012.00251.x
CrossRef
Google Scholar
Sievert C (2018) Plotly for R. https://plotly-book.cpsievert.me
Sun F, Roderick ML, Farquhar GD (2018) Rainfall statistics, stationarity, and climate change. P Natl Acad Sci USA 115:2305–2310. https://doi.org/10.1073/pnas.1705349115
CrossRef
Google Scholar
Tischer A, Zwanzig M, Frischbier N (2019) Spatiotemporal statistics: analysis of spatially and temporally-correlated throughfall data: exploring and considering dependency and heterogeneity. In: Levia DF, Carlyle-Moses DE, Iida S, Michalzik B, Nanko K, Tischer A (eds) Forest-water interactions. Ecological studies series, No. 240. Springer, Heidelberg. https://doi.org/10.1007/978-3-030-26086-6_8
Townend J (2008) Practical statistics for environmental and biological scientists. Wiley, Chichester, p 276. ISBN: 978-0-471-49665-6
Google Scholar
Unwin A (2018). OutliersO3: draws overview of outliers (O3) Plots. R package version 0.5.4. https://CRAN.R-project.org/package=OutliersO3
Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York. https://doi.org/10.1007/978-0-387-98141-3
CrossRef
Google Scholar
Wilks DS (2006) Statistical methods in the atmospheric sciences. Second edition. Elsevier, Amsterdam, p 676
Google Scholar
Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x
CrossRef
Google Scholar
Zuur AF, Ieno EN (2015) A beginner’s guide to data exploration and visualisation with R. Highland Statistics Ltd.
Google Scholar