Advertisement

Lessons in New Measurement Technologies: From Instrumenting Trees to the Trans-African Hydrometeorological Observatory

  • J. S. SelkerEmail author
  • F. Selker
  • R. Llamas
  • A. Kruger
  • J. Niemeier
  • M. R. Abou Najm
  • N. van de Giesen
  • R. Hut
  • T. van Emmerik
  • J. W. Lane
  • D. E. Rupp
  • H. Lintz
  • R. D. Stewart
  • K. McCulloh
Chapter
  • 119 Downloads
Part of the Ecological Studies book series (ECOLSTUD, volume 240)

Abstract

Ecohydrological monitoring technology is experiencing unprecedented expansion in capacity at ever lower costs. This allows for monitoring of systems at new scales spatially and allows for completely new strategies in observation. To represent the scale of this transformation, we present the framework for establishing a novel ecohydrological observation platform across the African continent (addressing the transformative opportunities made possible by wide-scale GPRS communication systems combined with solid-state sensing technology), as well as a strategy to leverage newly available accelerometer systems to monitor the dynamics of aboveground tree mass. The African observations are organized under the Trans-African Hydrometeorological Observatory (TAHMO.org), currently with about 500 installed stations across 20 African countries. Specific sensor technologies also open completely new approaches to measure key environmental variables. Aboveground mass of trees reflects, among other processes, the interception of rain, fog and snow, delivery of sap, addition of leaves, and loss of stem water. We demonstrate that passive sensing of tree acceleration due to wind can be used to evaluate change in mass caused by events such as leafing out or loss of leaves. We conclude by exploring the implications of ecohydrological observation at ever greater resolution and richness of variables.

Notes

Acknowledgements

The authors wish to thank the Plant Genome Research Program and the National Science Foundation for funding H.L., A.K., J.N., and R.L. on Award # 1238246, and J.S. on Awards # EAR 0930061 and #EAR 1551483 that contributed to this work.

References

  1. Bruchert F, Gardiner B (2006) The effect of wind exposure on the tree aerial architecture and biomechanics of Sitka spruce (Picea sitchensis, Pinaceae). Am J Bot 93:1512–1521.  https://doi.org/10.3732/ajb.93.10.1512 CrossRefGoogle Scholar
  2. Bruchert F, Speck O, Spatz H (2003) Oscillations of plants’ stems and their damping: theory and experimentation. Philos Trans R Soc London, Ser B 358:1487–1492.  https://doi.org/10.1098/rstb.2003.1348 CrossRefGoogle Scholar
  3. Clough BJ, Matthew RB, Domke GM (2016) Quantifying allometric model uncertainty for plot-level live tree biomass stocks with a data-driven, hierarchical framework. For Ecol Manag 372:175–188.  https://doi.org/10.1016/j.foreco.2016.04.001 CrossRefGoogle Scholar
  4. Fekete BM, Looser U, Pietroniro A et al (2012) Rationale for monitoring discharge on the ground. J Hydrometeorol 13:1977–1986.  https://doi.org/10.1175/JHM-D-11-0126.1 CrossRefGoogle Scholar
  5. Friesen JJ, Lundquist D, Van Stan JT (2015) Evolution of forest precipitation water storage measurement methods. Hydrol Process 29:2504–2520.  https://doi.org/10.1002/hyp.10376 CrossRefGoogle Scholar
  6. Fry BP (2011) Community forest monitoring in REDD+: the ‘M’ in MRV? Environ Sci Policy 14:181–187.  https://doi.org/10.1016/j.envsci.2010.12.004 CrossRefGoogle Scholar
  7. Green DW, Winandy JE, Kretschmann DE (1999) Chapter 4: Mechanical properties of wood. In: Wood handbook – wood as an engineering material, Gen Tech Rep FPL-GTR-113. USDA, US Forest Service, Madison, pp 4-1–4-45Google Scholar
  8. Hobiki Y, Yakubo K, Nakayama T (1996) Spectral characteristics in resonators with fractal boundaries. Phys Rev E 54:1997–2004.  https://doi.org/10.1103/PhysRevE.54.1997 CrossRefGoogle Scholar
  9. Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866.  https://doi.org/10.1038/nrg2897 CrossRefGoogle Scholar
  10. Kloeppel B, Harmon ME, Fahey TJ (2017) Estimating aboveground net primary productivity in forest-dominated ecosystems. In: Fahey T, Eds KA (eds) Principles and standards for measuring net primary production. Oxford University Press, New York, pp 63–81Google Scholar
  11. Kooreman BD (2013) Measuring weight fluctuations in trees based on natural frequency. MSc thesis, TU Delft, 56 pGoogle Scholar
  12. Luyssaert S, Schulze ED, Börner A et al (2008) Old-growth forests as global carbon sink. Nature 455.7210:213–215.  https://doi.org/10.1038/nature07276 CrossRefGoogle Scholar
  13. Melson SL, Harmon ME, Fried JS et al (2011) Estimates of live-tree carbon stores in the Pacific Northwest are sen­sitive to model selection. Carbon Balance Manag 6:1–16.  https://doi.org/10.1186/1750-0680-6-2 CrossRefGoogle Scholar
  14. Neale D, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122.  https://doi.org/10.1038/nrg2931 CrossRefGoogle Scholar
  15. Rodriguez M, de Langre E, Moulia B (2008) A scaling law for the effects of architecture and allometry on tree vibration modes suggests a biological tuning to modal compartmentalization. Am J Bot 95:1523–1537.  https://doi.org/10.3732/ajb.0800161 CrossRefGoogle Scholar
  16. Sapoval B (1989) Experimental observation of local modes in fractal drums. Physica D 38:296–298.  https://doi.org/10.1016/0167-2789(89)90209-1 CrossRefGoogle Scholar
  17. Sapoval B, Gobron T (1993) Vibrations of strongly irregular or fractal resonators. Phys Rev E 47:3013.  https://doi.org/10.1103/PhysRevE.47.3013 CrossRefGoogle Scholar
  18. Schmidt RO (1986) Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag AP34:276–280.  https://doi.org/10.1109/TAP.1986.1143830 CrossRefGoogle Scholar
  19. Sellier D, Fourcand T (2005) A mechanical analysis of the relationship between free oscillations of Pinus pinaster Ait. saplings and their aerial architecture. J Exp Bot 56:1563–1573.  https://doi.org/10.1093/jxb/eril151 CrossRefGoogle Scholar
  20. Simonin KA, Santiago LS, Dawson TE (2009) Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit. Plant Cell Environ 32:882–892.  https://doi.org/10.1111/j.1365-3040.2009.01967.x CrossRefGoogle Scholar
  21. Spatz H, Bruchert F, Pfisterer J (2007) Multiple resonance damping or how do trees escape dangerously large oscillations? Am J Bot 94:1603–1611.  https://doi.org/10.3732/ajb.94.10.1603 CrossRefGoogle Scholar
  22. Stewart RD, Hut R, Rupp DE et al (2012) A resonating rainfall and evaporation recorder. Water Resour Res 48:W08601.  https://doi.org/10.1029/2011WR011529 CrossRefGoogle Scholar
  23. Stone EC (1957) Dew as an ecological factor: II. The effect of artificial dew on the survival of Pinus Ponderosa and associated species. Ecology 38:414–422.  https://doi.org/10.2307/1929884 CrossRefGoogle Scholar
  24. Toté C, Patricio D, Boogaard H et al (2015) Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sens 7:1758–1776.  https://doi.org/10.3390/rs70201758 CrossRefGoogle Scholar
  25. Xiao Q, McPherson EG, Ustin SL et al (2000) Winter rainfall interception by two mature open-grown trees in Davis, California. Hydrol Process 14:763–784.  https://doi.org/10.1002/(SICI)1099-1085(200003)14:4<763::AID-HYP971>3.0.CO;2-7 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • J. S. Selker
    • 1
    Email author
  • F. Selker
    • 2
  • R. Llamas
    • 3
  • A. Kruger
    • 3
  • J. Niemeier
    • 4
  • M. R. Abou Najm
    • 5
  • N. van de Giesen
    • 6
  • R. Hut
    • 6
  • T. van Emmerik
    • 6
  • J. W. Lane
    • 7
  • D. E. Rupp
    • 8
  • H. Lintz
    • 8
  • R. D. Stewart
    • 9
  • K. McCulloh
    • 10
  1. 1.Department of Biological and Ecological EngineeringOregon State UniversityCorvallisUSA
  2. 2.SelkerMetricsPortlandUSA
  3. 3.Department of Electrical and Computer Engineering and IIHR-Hydroscience & EngineeringUniversity of IowaIowa CityUSA
  4. 4.IIHR-Hydroscience & EngineeringThe University of IowaIowa CityUSA
  5. 5.University of California DavisDavisUSA
  6. 6.Faculty of Civil Engineering and GeosciencesDelft University of TechnologyDelftHolland
  7. 7.USGS Office of GeophysicsStorrsUSA
  8. 8.Oregon Climate Change Research Institute, College of Earth, Ocean, and Atmospheric SciencesOregon State UniversityCorvallisUSA
  9. 9.Department of Crop & Soil Environmental SciencesVirginia TechBlacksburgUSA
  10. 10.Department of BotanyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations