Abstract
The purpose of this chapter is to (1) provide an overview of radiocesium dynamics in forests affected by past nuclear accidents; (2) introduce the latest monitoring results of radiocesium cycling during the early phase of the Fukushima accident; and (3) discuss the potential suitability of radiocesium as a tracer of water and element cycling in forest ecosystems. Canopy interception of atmospherically deposited radiocesium varied significantly among different tree species. The evergreen conifers tend to show high canopy interception rate, often exceeding 70% of atmospheric input. The high interception fraction of the deposited radiocesium by coniferous canopies indicated that the canopy will act as a secondary source of radioactive contamination of the forest floor. On the other hand, broadleaved deciduous tree species showed relatively low interception rates of less than 40% of atmospheric input. Recent studies following the Fukushima accident have provided initial insights of the behavior of atmospheric radiocesium in the forest environment and increased our process-based understanding of radiocesium cycling. Building upon the knowledge gleaned from earlier works, there are ample opportunities for new lines of research that further elucidate the role of forest-water interactions on the cycling of radiocesium.
This is a preview of subscription content, access via your institution.
Buying options










References
Ashraf MA, Akib S, Maah MJ, Yusoff I, Balkhair KS (2014) Cesium-137: radio-chemistry, fate, and transport, remediation, and future concerns. Crit Rev Environ Sci Technol 44:1740–1793. https://doi.org/10.1080/10643389.2013.790753
Bonnett PJP, Anderson MA (1993) Radiocaesium dynamics in a coniferous forest canopy: a mid-Wales case study. Sci Total Environ 136:259–277. https://doi.org/10.1016/0048-9697(93)90314-V
Bunzl K, Schimmack W, Kreutzer K, Schierl R (1989) Interception and retention of Chernobyl-derived 134Cs, 137Cs and 106Ru in a spruce stand. Sci Total Environ 78:77–87. https://doi.org/10.1016/0048-9697(89)90023-5
Calmon P, Gonze MA, Mourlon C (2015) Modeling the early-phase redistribution of radiocesium fallouts in an evergreen coniferous forest after Chernobyl and Fukushima accidents. Sci Total Environ 529:30–39. https://doi.org/10.1016/j.scitotenv.2015.04.084
Cambray RS, Playford K, Carpenter RC (1989) Radioactive fallout in air and rain: results to the end of 1988. In: UK atomic energy authority Rep., AERE-R 13575. HMSO, London
Carlyle-Moses DE, Iida S, Germer S, Llorens P, Michalzik B, Nanko K et al (2018) Expressing stemflow commensurate with its ecohydrological importance. Adv Water Resour 121:472–479. https://doi.org/10.1016/j.advwatres.2018.08.015
Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J Nucl Sci Technol 48:1129–1134. https://doi.org/10.1080/18811248.2011.9711799
Goor F, Thiry Y (2004) Processes, dynamics and modelling of radiocaesium cycling in a chronosequence of Chernobyl-contaminated scots pine (Pinus sylvestris L.) plantations. Sci Total Environ 325:163–180. https://doi.org/10.1016/j.scitotenv.2003.10.037
Guillitte O, Andolina J, Koziol M, Debauche A (1990) Plant-cover influence on the spatial distribution of radiocesium deposits in forest ecosystems. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier Applied Science, London, pp 441–449
Hisadome K, Onda Y, Kawamori A, Kato H (2013) Migration of radiocesium with litterfall in hardwood-Japanese red pine mixed forest and sugi plantation. J Jpn Forest Soc 95:267–274. (in Japanese with English summary). https://doi.org/10.4005/jjfs.95.267
Hoffman FO, Thiessen KM, Rael RM (1995) Comparison of interception and initial retention of wet-deposited contaminants on leaves of different vegetation types. Atmos Environ 29:1771–1775. https://doi.org/10.1016/1352-2310(95)00099-K
IAEA (2002) Modelling the migration and accumulation of radionuclides in forest ecosystems. International Atomic Energy Agency, Vienna
IAEA (2006) Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience; report of the Chernobyl forum expert group ‘environment. In: Radiological assessment reports series. International Atomic Energy Agency, Vienna, p 166
IAEA (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. IAEA Tech Rep Ser 472:191
Imamura N, Komatsu M, Ohashi S, Hashimoto S, Kajimoto T, Kaneko S et al (2017a) Temporal changes in the radiocesium distribution in forests over the five years after the Fukushima Daiichi nuclear power plant accident. Sci Rep- UK 7:8179. https://doi.org/10.1038/s41598-017-08261-x
Imamura N, Levia DF, Toriyama J, Kobayashi M, Nanko K (2017b) Stemflow-induced spatial heterogeneity of radiocesium concentrations and stocks in the soil of a broadleaved deciduous forest. Sci Total Environ 599-600:1013–1021. https://doi.org/10.1016/j.scitotenv.2017.05.017
Itoh Y, Imaya A, Kobayashi M (2015) Initial radiocesium deposition on forest ecosystems surrounding the Tokyo metropolitan area due to the Fukushima Daiichi nuclear power plant accident. Hydrol Res Lett 9:1–7. https://doi.org/10.3178/hrl.9.1
Iwagami S, Onda Y, Tsujimura M, Abe Y (2017a) Contribution of radioactive 137Cs discharge by suspended sediment, coarse organic matter, and dissolved fraction from a headwater catchment in Fukushima after the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 166:466–474. https://doi.org/10.1016/j.jenvrad.2016.07.025
Iwagami S, Tsujimura M, Onda Y, Nishino M, Konuma R, Abe Y et al (2017b) Temporal changes in dissolved 137Cs concentrations in groundwater and stream water in Fukushima after the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 166:458–465. https://doi.org/10.1016/j.jenvrad.2015.03.025
Iwagami S, Onda Y, Tsujimura M, Hada M, Pun I (2017c) Vertical distribution and temporal dynamics of dissolved 137Cs concentrations in soil water after the Fukushima Dai-ichi Nuclear Power Plant accident. Environ Pollut 230:1090–1098. https://doi.org/10.1016/j.envpol.2017.07.056
Kanasashi T, Sugiura Y, Takenaka C, Hijii N, Uemura M (2015) Radiocesium distribution in sugi (Cryptomeria japonica) in eastern Japan: translocation from needles to pollen. J Environ Radioact 139:398–406. https://doi.org/10.1016/j.jenvrad.2014.06.018
Kato H, Onda Y, Gomi T (2012) Interception of the Fukushima reactor accident-derived 137Cs, 134Cs and 131I by coniferous forest canopies. Geophys Res Lett 39:L20403. https://doi.org/10.1029/2012GL052928
Kato H, Onda Y, Loffredo N, Hisadome K, Kawamori A (2017) Temporal changes in radiocesium deposition in various forest stands following the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 116:449–457. https://doi.org/10.1016/j.jenvrad.2015.04.016
Kato H, Onda Y, Saidin ZH, Sakashita W, Hisadome K, Loffredo N (2018a) Six-year monitoring study of radiocesium transfer in forest environments following the Fukushima Nuclear Power Plant accident. J Environ Radioactiv In press:105817. https://doi.org/10.1016/j.jenvrad.2018.09.015
Kato H, Onda Y, Wakahara T, Kawamori A (2018b) Spatial pattern of atmospherically deposited radiocesium on the forest floor in the early phase of the Fukushima Daiichi Nuclear Power Plant accident. Sci Total Environ 615:187–196. https://doi.org/10.1016/j.scitotenv.2017.09.212
Khomutinin YV, Kashparov VA, Zhebrovska KI (2004) Sampling optimization when radioecological monitoring. Ukraine Institute for Agricultural Radiology, Kiev, p 137
Kinnersley RP, Shaw G, Bell JNB, Minski J, Goddard AJH (1996) Loss of particulate contaminants from plant canopies under wet and dry conditions. Environ Pollut 91:227–235. https://doi.org/10.1016/0269-7491(95)00047-X
Korobova E, Romanov S (2011) Experience of mapping spatial structure of Cs-137 in natural landscape and patterns of its distribution in soil toposequence. J Geochem Explor 109:139–145. https://doi.org/10.1016/j.gexplo.2011.02.006
Landis JD, Hamm NT, Renshaw CE, Dade WB, Magilligan FJ, Gartner JD (2012) Surficial redistribution of fallout 131iodine in a small temperate catchment. P Natl Acad Sci US 109:4064–4069. https://doi.org/10.1073/pnas.1118665109
Levia D, Germer S (2015) A review of stemflow generation dynamics and stemflow-environment interactions in forests and shrublands. Rev Geophys 53:673–714. https://doi.org/10.1002/2015RG000479
Loffredo N, Onda Y, Kawamori A, Kato H (2014) Modeling of leachable Cs-137 in throughfall and stemflow for Japanese forest canopies after Fukushima Daiichi Nuclear Power Plant accident. Sci Total Environ 493:701–707. https://doi.org/10.1016/j.scitotenv.2014.06.059
Loffredo N, Onda Y, Hurtevent P, Coppin F (2015) Equation to predict 137Cs leaching dynamic from evergreen canopies after a radio-cesium deposit. J Environ Radioact 147:100–107. https://doi.org/10.1016/j.jenvrad.2015.05.018
Madoz-Escande C, Garcia-Sanchez L, Bonhomme T, Morello M (2005) Influence of rainfall characteristics on elimination of aerosols of cesium, strontium, barium and tellurium deposited on grassland. J Environ Radioact 84:1–20. https://doi.org/10.1016/j.jenvrad.2005.03.006
Melin J, Wallberg L, Suomela J (1994) Distribution and retention of cesium and strontium in Swedish boreal forest ecosystems. Sci Total Environ 157:93–105. https://doi.org/10.1016/0048-9697(94)90568-1
MEXT (2011) Results of the third Airborne monitoring survey by MEXT. radioactivity.nsr.go.jp/en/contents/5000/4182/24/1304797_0708e.pdf. Last Accessed on 1 July 2017
Myttenaere C, Schell WR, Thiry Y, Sombré L, Ronneau C, Van Der Stegen J (1993) Modelling of the Cs-137 cycling in forest: recent development and research needed. Sci Total Environ 136:77–91. https://doi.org/10.1016/0048-9697(93)90298-K
Nimis PL (1996) Radiocesium in plants of forest ecosystems. Stud Geobot 15:3–49
Ninemets Y, Tamm U (2005) Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands. Tree Physiol 25:1001–1014. https://doi.org/10.1093/treephys/25.8.1001
Nishikiori T, Watanabe M, Koshikawa M, Takamatsu T, Ishii Y, Ito S et al (2015) Uptake and translocation of radiocesium in cedar leaves following the Fukushima nuclear accident. Sci Total Environ 502:611–616. https://doi.org/10.1016/j.scitotenv.2014.09.063
Okada N, Nakai W, Ohashi S, Tanaka A (2015) Radiocesium migration from the canopy to the forest floor in pine and deciduous forests. J Jpn Forest Soc 97:57–62. https://doi.org/10.4005/jjfs.97.57
Onda Y, Kato H, Hoshi M, Takahashi Y, Nguyen M (2015) Soil sampling and analytical strategies for mapping fallout in nuclear emergencies based on the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 139:300–307. https://doi.org/10.1016/j.jenvrad.2014.06.002
Pröhl G (2009) Interception of dry and wet deposited radionuclides by vegetation. J Environ Radioact 100:675–682. https://doi.org/10.1016/j.jenvrad.2008.10.006
Ronneau C, Cara J, Apers D (1987) The deposition of radionuclides from Chernobyl to a forest in Belgium. Atmos Environ 21:1467–1468. https://doi.org/10.1016/0004-6981(67)90094-7
Ronneau C, Sombré L, Myttenaere C, Andre P, Vanhouche M, Cara J (1991) Radiocaesium and potassium behavior in forest trees. J Environ Radioact 14:259–268. https://doi.org/10.1016/0265-931X(91)90032-B
Schell WR, Linkov I, Myttenaere C, Morel B (1996) A dynamic model for evaluating radionuclide distribution in forests from nuclear accidents. Health Phys 70:318–335. https://doi.org/10.1097/00004032-199603000-00002
Schimmack W, Bunzl K, Kreutzer K, Rondenkirchen E, Schierl R (1991) Einfluss von fichte (Picea abies L. Karst) und buche (Fagus sylvatica L.) auf die Wanderung von radiocasium im Boden. Fortwiss Forsch 39:242–251
Shcheglov AI, Tsvetnova OB, Klyashtorin AI (2001) Biogeochemical migration of technogenic radionuclides in forest ecosystems. NAUKA, Moscow, p 235
Smith JT, Comans RNJ, Beresford NA, Wright SM, Howard BJ, Camplin WC (2000) Chernobyl’s legacy in food and water. Nature 405:141. https://doi.org/10.1038/35012139
Smith JT, Cross MA, Wright SM (2002) Predicting transfers of 137Cs in terrestrial and aquatic environments: a whole-ecosystem approach. Radioprotection 37:37–42. https://doi.org/10.1051/radiopro/2002071
Smith JT, Wright SM, Cross MA, Monte L, Kudelsky AV, Saxén R et al (2004) Global analysis of the riverine transport of 90Sr and 137Cs. Environ Sci Technol 38:850–857. https://doi.org/10.1021/es0300463
Sombre L, Vanhouche M, Thiry Y, Ronneau C, Lambotte JM, Myttenaere C (1990) Transfer of radiocesium in forest ecosystems resulting from a nuclear accident. In: Desmet G et al (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier Applied Science, London, pp 74–83
Takenaka C, Onda Y, Hamajima Y (1998) Distribution of cesium-137 in Japanese forest soils: correlation with the contents of organic carbon. Sci Total Environ 222:193–199. https://doi.org/10.1016/S0048-9697(98)00305-2
Tamura T (1964) Selective sorption reaction of cesium with mineral soils. Nucl Saf 5:262–268
Thiry Y (1997) Etude du cycle du radiocesium en ecosysteme forestier: Distribution et facteurs de mobilité. Thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Thiry Y, Garcia-Sanchez L, Hurtevent P (2016) Experimental quantification of radiocesium recycling in a coniferous tree after aerial contamination: field loss dynamics, translocation and final partitioning. J Environ Radioact 161:42–50. https://doi.org/10.1016/j.jenvrad.2015.12.017
Tikhomirov FA, Shcheglov AI (1991) The radiological consequences of the Kyshtym and Chernobyl radiation accidents for forest ecosystems. In: Proceedings of the seminar on comparative assessment of the environmental impact of radionuclides released during three major nuclear accidents, Kyshtym, Windscale, Chernobyl. CEC, Luxembourg, 1–5 October 1990, H, EUR 13574, pp 867–888
Walling DE (2002) Recent advances in the use of environmental radionuclides in soil erosion investigations. IAEA-SM-363/89, Report No IAEA-CSP--11/C, pp 279–301
Yoshihara T, Matsumura H, Tsuzaki M, Wakamatsu T, Kobayashi T, Hashida S, Nagaoka T, Goto F (2014) Changes in radiocesium contamination from Fukushima in foliar parts of 10 common tree species in Japan between 2011 and 2013. J Environ Radioact 138:220–226. https://doi.org/10.1016/j.jenvrad.2014.09.002
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Kato, H. (2020). Radiocesium Cycling in the Context of Forest-Water Interactions. In: Levia, D.F., Carlyle-Moses, D.E., Iida, S., Michalzik, B., Nanko, K., Tischer, A. (eds) Forest-Water Interactions. Ecological Studies, vol 240. Springer, Cham. https://doi.org/10.1007/978-3-030-26086-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-26086-6_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26085-9
Online ISBN: 978-3-030-26086-6
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)