Skip to main content

Experimental Analysis of Titanium Drilling

  • Chapter
  • First Online:
  • 226 Accesses

Abstract

Drill temperature is a critical factor in drilling of Ti alloys. As a result of the low thermal conductivity of the Ti alloys as the work-material, most of the heat generated in the tool–chip interface transfers to the tool and generates high drill temperature in drilling of Ti alloys. This chapter outlines experimental study of drilling of Ti alloys.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stephenson DA, Agapiou JS (2016) Metal cutting theory and practice, 3rd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Ernst H, Haggerty WA (1958) Spiral point drill-new concept in drill point geometry. ASME Trans 80:1059–1072

    Google Scholar 

  3. Li R, Riester L, Watkins TR, Blau PJ, Shih AJ (2008) Metallurgical analysis and nanoindentation characterization of Ti–6Al–4V workpiece and chips in high-throughput drilling. Mater Sci Eng A 472:115–124

    Article  Google Scholar 

  4. Center MD (1980) Machining data handbook, 3rd edn. TechSolve, Cincinnati

    Google Scholar 

  5. Kitagawa T, Kubo A, Maekawa K (1997) Temperature and wear of cutting tools in high-speed machining of inconel 718 and Ti-6Al-6V-2Sn. Wear 202:142–148

    Article  CAS  Google Scholar 

  6. Zareena A, Rahman M, Wong Y (2001) High speed machining of aerospace alloy Ti–6Al–4V. In: 33rd international SAMPE technical conference. Advancing affordable materials technology, Seattle, WA, vol 33. SAMPE, pp 739–750

    Google Scholar 

  7. Trent EM, Wright PK (2000) Metal cutting. Butterworth-Heinemann, Boston

    Book  Google Scholar 

  8. Ke F (2003) Analysis and modeling of chip ejection in deep hole drilling process. University of Michigan, Ann Arbor

    Google Scholar 

  9. Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51:250–280

    Article  Google Scholar 

  10. Mantle AL, Aspinwall DK (2001) Surface integrity of a high speed milled gamma titanium aluminide. J Mater Process Technol 118:143–150

    Article  CAS  Google Scholar 

  11. Che-Haron CH (2001) Tool life and surface integrity in turning titanium alloy. J Mater Process Technol 118:231–237

    Article  CAS  Google Scholar 

  12. Shaw MC, Dirke SO, Smith P, Cook NH, Loewen EG, Yang CT (1954) Machining titanium: a report prepared for the United States air force. MIT Press, Cambridge

    Google Scholar 

  13. Komanduri R, Von Turkovich BF (1981) New observations on the mechanism of chip formation when machining titanium alloys. Wear 69:179–188

    Article  CAS  Google Scholar 

  14. Komanduri R (1982) Some clarifications on the mechanics of chip formation when machining titanium alloys. Wear 76:15–34

    Article  Google Scholar 

  15. Xie JQ, Bayoumi AE, Zbib HM (1996) A study on shear banding in chip formation of orthogonal machining. Int J Mach Tools Manuf 36:835–847

    Article  Google Scholar 

  16. Sheikh-Ahmad J, Bailey JA (1997) Flow instability in the orthogonal machining of CP titanium. J Manuf Sci Eng 119:307–313

    Article  Google Scholar 

  17. Barry J, Byrne G, Lennon D (2001) Observations on chip formation and acoustic emission in machining Ti–6Al–4V alloy. Int J Mach Tools Manuf 41:1055–1070

    Article  Google Scholar 

  18. Qu J, Riester L, Shih AJ, Scattergood RO, Lara-Curzio E, Watkins TR (2003) Nanoindentation characterization of surface layers of electrical discharge machined WC–Co. Mater Sci Eng A 344:125–131

    Article  Google Scholar 

  19. Machado A, Wallbank J (1990) Machining of titanium and its alloys—a review. Proc Inst Mech Eng B J Eng Manuf 204:53–60

    Article  Google Scholar 

  20. Cantero JL, Tardío M, Canteli JA, Marcos-Bárcena M, Miguélez MH (2005) Dry drilling of alloy Ti–6Al–4V. Int J Mach Tools Manuf 45:1246–1255

    Article  Google Scholar 

  21. Cullity BD (1978) Elements of x-ray diffraction. Addison-Wesley, Reading

    Google Scholar 

  22. Donachie MJ (1988) Titanium: a technical guide. ASM International, Material Park

    Google Scholar 

  23. Bayoumi AE, Xie JQ (1995) Some metallurgical aspects of chip formation in cutting TI-6AL-4V alloy. Mater Sci Eng A 190:173–180

    Article  Google Scholar 

  24. Reissig L, Völkl R, Mills MJ, Glatzel U (2004) Investigation of near surface structure in order to determine process-temperatures during different machining processes of Ti6Al4V. Scr Mater 50:121–126

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shih, A.J., Tai, B.L., Li, R. (2019). Experimental Analysis of Titanium Drilling. In: Metal and Bone Drilling - The Thermal Aspects. Springer, Cham. https://doi.org/10.1007/978-3-030-26047-7_2

Download citation

Publish with us

Policies and ethics