• Albert J. Shih
  • Bruce L. Tai
  • Rui Li


Drilling is a machining process to create a round hole in a workpiece using a drill. A drill is a rotating cylindrical tool with cutting edges on the working end. The drill feeds into the workpiece to generate a round hole. Such round hole is a common feature in product design to achieve various functional purposes, such as joining, access, and fluid passages. The size, shape, position, and surface integrity of the drilled holes are determined by the drill and drilling process parameters (particularly the rotational speed and feed rate), as well as the temperature, deformation, surface integrity, and thermal expansion of the drill and workpiece.


  1. 1.
    Lütjering G, Williams JC (2007) Titanium. Springer, BerlinGoogle Scholar
  2. 2.
    Donachie MJ (2000) Titanium: A Technical Guide, 2nd edn. ASM International, Material ParkGoogle Scholar
  3. 3.
    Kraft E (2003) Summary of emerging titanium cost reduction technologies. Oak Ridge National Laboratory Report ORNL/Sub/4000023694/Google Scholar
  4. 4.
    Peters M, Kumpfert J, Ward CH, Leyens C (2003) Titanium alloys for aerospace applications. Adv Eng Mater 5:419–427CrossRefGoogle Scholar
  5. 5.
    Montgomery JS, Wells MGH (2001) Titanium armor applications in combat vehicles. JOM 53:29–32CrossRefGoogle Scholar
  6. 6.
    Brunette DM, Tengvall P, Textor M (2001) Titanium in medicine: material science, surface science, engineering, biological responses, and medical applications. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Machado AR, Wallbank J (1990) Machining of titanium and its alloys—a review. Proc Inst Mech Eng B J Eng Manuf 204:53–60CrossRefGoogle Scholar
  8. 8.
    Ezugwu EO, Wang ZM (1997) Titanium alloys and their machinability—a review. J Mater Process Technol 68:262–274CrossRefGoogle Scholar
  9. 9.
    Yang X, Richard Liu C (1999) Machining titanium and its alloys. Mach Sci Technol 3:107–139CrossRefGoogle Scholar
  10. 10.
    Rahman M, Wang Z-G, Wong Y-S (2006) A review on high-speed machining of titanium alloys. JSME Int J Ser C 49:11–20CrossRefGoogle Scholar
  11. 11.
    Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51:250–280CrossRefGoogle Scholar
  12. 12.
    Watanabe I, Kiyosue S, Ohkubo C, Aoki T, Okabe T (2002) Machinability of cast commercial titanium alloys. J Biomed Mater Res 63:760–764CrossRefGoogle Scholar
  13. 13.
    Veiga C, Davim JP, Loureiro AJR (2013) Review on machinability of titanium alloys: the process perspective. Rev Adv Mater Sci 34:148–164Google Scholar
  14. 14.
    Zhang PF, Churi NJ, Pei ZJ, Treadwell C (2008) Mechanical drilling processes for titanium alloys: a literature review. Mach Sci Technol 12:417–444CrossRefGoogle Scholar
  15. 15.
    Hurless BE, Froes FH (2002) Lowering the cost of titanium. AMPTIAC Q 6:3–9Google Scholar
  16. 16.
    Hartung PD, Kramer BM, von Turkovich BF (1982) Tool wear in titanium machining. CIRP Ann 31:75–80CrossRefGoogle Scholar
  17. 17.
    Bermingham M, Kirsch J, Sun S, Palanisamy S, Dargusch MS (2011) New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V. Int J Mach Tools Manuf 51:500–511CrossRefGoogle Scholar
  18. 18.
    Dornfeld D, Kim JS, Dechow H, Hewson J, Chen LJ (1999) Drilling burr formation in titanium alloy, Ti-6Al-4V. CIRP Ann 48:73–76CrossRefGoogle Scholar
  19. 19.
    Sakurai K, Adachi K, Ogawa K, Niba R (1992) Drilling of Ti-6Al-4V alloy. J Jpn Inst Light Metals 42:389–394CrossRefGoogle Scholar
  20. 20.
    Sakurai K, Adachi K, Ogawa K (1992) Low frequency vibratory drilling of Ti-6Al-4V alloy. J Jpn Inst Light Metals 42:633–637CrossRefGoogle Scholar
  21. 21.
    Sakurai K, Adachi K, Kamekawa T, Ogawa K, Hanasaki S (1996) Intermittently decelerated feed drilling of Ti-6Al-4V alloy. J Jpn Inst Light Metals 46:138–143CrossRefGoogle Scholar
  22. 22.
    Arai M, Ogawa M (1997) Effects of high pressure supply of coolant in drilling of titanium alloy. J Jpn Inst Light Metals 47:139–144CrossRefGoogle Scholar
  23. 23.
    Cantero JL, Tardío M, Canteli JA, Marcos-Bárcena M, Miguélez MH (2005) Dry drilling of alloy Ti-6Al-4V. Int J Mach Tools Manuf 45:1246–1255CrossRefGoogle Scholar
  24. 24.
    Li R, Shih AJ (2007) Tool temperature in titanium drilling. J Manuf Sci Eng 129:740–749CrossRefGoogle Scholar
  25. 25.
    Li R, Hegde P, Shih A (2007) High-throughput drilling of titanium alloys. Int J Mach Tools Manuf 47:63–74CrossRefGoogle Scholar
  26. 26.
    Li R, Shih A (2007) Spiral point drill temperature and stress in high-throughput drilling of titanium. Int J Mach Tools Manuf 47:2005–2017CrossRefGoogle Scholar
  27. 27.
    Li R, Shih AJ (2007) Finite element modeling of high-throughput drilling of Ti-6Al-4V. Trans NAMRI/SME 35:73–80Google Scholar
  28. 28.
    Li R, Riester L, Watkins TR, Blau PJ, Shih AJ (2008) Metallurgical analysis and nanoindentation characterization of Ti–6Al–4V workpiece and chips in high-throughput drilling. Mater Sci Eng A 472:115–124CrossRefGoogle Scholar
  29. 29.
    Grzesik W, Rech J, Żak K, Claudin C (2009) Machining performance of pearlitic–ferritic nodular cast iron with coated carbide and silicon nitride ceramic tools. Int J Mach Tools Manuf 49:125–133CrossRefGoogle Scholar
  30. 30.
    Nayyar V, Kaminski J, Kinnander A, Nyborg L (2012) An experimental investigation of machinability of graphitic cast iron grades; flake, compacted and spheroidal graphite iron in continuous machining operations. Procedia CIRP 1:488–493CrossRefGoogle Scholar
  31. 31.
    Heck M, Ortner HM, Flege S, Reuter U, Ensinger W (2008) Analytical investigations concerning the wear behavior of cutting tools used for the machining of compacted graphite iron and grey cast iron. Int J Refract Met Hard Mater 26:197–206CrossRefGoogle Scholar
  32. 32.
    Dawson S, Hollinger I, Robbins M, Daeth J, Reuter U, Schulz H (2001) The effect of metallurgical variables on the machinability of compacted graphite iron. SAE International, V110–5, p 21Google Scholar
  33. 33.
    Lampman S, Moosbrugger C, DeGuire E (2008) ASM handbook: casting, vol 15. ASM International, Material ParkGoogle Scholar
  34. 34.
    Dawson S, Schroeder T (2004) Practical applications for compacted graphite iron. AFS Trans 47:1–10Google Scholar
  35. 35.
    Alves SM, Schroeter RB, Bossardi JCDS, Andrade CLFD (2011) Influence of EP additive on tool wear in drilling of compacted graphite iron. J Braz Soc Mech Sci Eng 33:197–202CrossRefGoogle Scholar
  36. 36.
    Filipovic A, Stephenson DA (2006) Minimum quantity lubrication (MQL) applications in automotive power-train machining. Mach Sci Technol 10:3–22CrossRefGoogle Scholar
  37. 37.
    Tai BL, Stephenson DA, Shih AJ (2013) Workpiece temperature during deep-hole drilling of cast iron using high air pressure minimum quantity lubrication. J Manuf Sci Eng 135(031019):1–7Google Scholar
  38. 38.
    Tai BL, Stephenson DA, Shih AJ (2012) An inverse heat transfer method for determining workpiece temperature in MQL deep hole drilling. J Manuf Sci Eng 134(021006):1–8Google Scholar
  39. 39.
    Tai BL, Jessop A, Stephenson DA, Shih AJ (2012) Workpiece thermal distortion in MQL deep hole drilling - finite element modeling and experimental validation. J Manuf Sci Eng 134(011008):1–9Google Scholar
  40. 40.
    Eriksson RA, Albrektsson T, Magnusson B (1984) Assessment of bone viability after heat trauma: a histological, histochemical and vital microscopic study in the rabbit. Scand J Plast Reconstr Surg 18:261–268CrossRefGoogle Scholar
  41. 41.
    Hillery MT, Shuaib I (1999) Temperature effect in drilling of human and bovine bone. J Mater Process Technol 92:302–308CrossRefGoogle Scholar
  42. 42.
    Augustin G, Davila S, Udiljak T, Vedrina DS, Bagatin D (2009) Determination of spatial distribution of increase in bone temperature during drilling by infrared thermography: preliminary report. Arch Orthop Trauma Surg 129:703–709CrossRefGoogle Scholar
  43. 43.
    Augustin G, Davila S, Mihoci K, Udiljak T, Vedrina DS, Antabak A (2008) Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg 128:71–77CrossRefGoogle Scholar
  44. 44.
    Augustin G, Zigman T, Davila S, Udilljak T, Staroveski T, Brezak D, Babic S (2012) Cortical bone drilling and thermal osteonecrosis. Clin Biomech 27:313–325CrossRefGoogle Scholar
  45. 45.
    Berman AT, Reid JS, Yanicko DR, Sih GC, Zimmerman MR (1984) Thermally induced bone necrosis in rabbits: relation to implant failure in humans. Curr Orthop Pract 186:284–292Google Scholar
  46. 46.
    Palmisano AC, Tai BL, Belmont B, Irwin T, Shih AJ, Holmes J (2015) Comparison of cortical one drilling induced heat production among common drilling tools. J Orthop Trauma 29:e188–e193CrossRefGoogle Scholar
  47. 47.
    Tai BL, Palmisano AC, Belmont B, Irwin T, Shih AJ, Holmes J (2015) Numerical evaluation of sequential bone drilling strategies based on thermal damage. Med Eng Phys 37:855–861CrossRefGoogle Scholar
  48. 48.
    Palmisano AC, Tai BL, Belmont B, Irwin TA, Shih A, Holmes JR (2016) Heat accumulation during sequential cortical bone drilling. J Orthop Res 34:463–470CrossRefGoogle Scholar
  49. 49.
    Liu Y, Belmont B, Wang Y, Tai B, Holmes J, Shih A (2017) Notched K-wire for low thermal damage bone drilling. Med Eng Phys 45:25–33CrossRefGoogle Scholar
  50. 50.
    Stoll A, Sebastian AJ, Klosinski R, Furness R (2008) Lean and environmentally friendly manufacturing – minimum quantity lubrication (MQL) is a key technology for driving the paradigm shift in machining operations. SAE Technical paper, SP-2208-011128Google Scholar
  51. 51.
    Tai B, Stephenson DA, Furness R, Shih A (2014) Minimum quantity lubrication (MQL) in automotive powertrain machining. Procedia CIRP 14:523–528CrossRefGoogle Scholar
  52. 52.
    Tai BL, Dasch JM, Shih AJ (2011) Evaluation and comparison of lubricant properties in minimum quantity lubrication machining. Mach Sci Technol 15:376–391CrossRefGoogle Scholar
  53. 53.
    Itoigawa F, Childs THC, Nakamura T, Belluco W (2006) Effects and mechanisms in minimal quantity lubrication machining of an aluminum alloy. Wear 260:339–344CrossRefGoogle Scholar
  54. 54.
    Heinemann R, Hinduja S, Barrow G, Petuelli G (2006) Effect of MQL on the tool life of small twist drills in deep-hole drilling. Int J Mach Tools Manuf 46:1–6CrossRefGoogle Scholar
  55. 55.
    Hussain MI, Taraman KS, Filipovic AJ, Immo G (2008) Experimental study to analyse the workpiece surface temperature in deep hole drilling of aluminium alloy engine blocks using MQL technology. J Achiev Mater Manuf Eng 31:1–6Google Scholar
  56. 56.
    Franssen BB, Schuurman AH, Van der Molen AM, Kon M (2010) One century of Kirschner wires and Kirschner wire insertion techniques: a historical review. Acta Orthop Belg 76:1–6PubMedGoogle Scholar
  57. 57.
    Nichter LS, Spencer S, Navarrette PM, Kosari K (1992) The biomechanical efficacy of an oscillating K-wire driver. Ann Plast Surg 29:289–292CrossRefGoogle Scholar
  58. 58.
    Wassenaar EB, Franssen BBGM, van Egmond DB, Kon M (2006) Fixation of Kirschner wires: a comparison between hammering and drilling k-wires into ribs of pigs. Eur J Plast Surg 29:153–156CrossRefGoogle Scholar
  59. 59.
    Khanna A, Plessas SJ, Barrett P, Bainbridge LC (1999) The thermal effects of kirshner wire fixation on small bones. J Hand Surg Am 24:355–357CrossRefGoogle Scholar
  60. 60.
    Karmani S, Lam F (2004) The design and function of surgical drills and K-wires. Curr Orthop 18:484–490CrossRefGoogle Scholar
  61. 61.
    Pandey RK, Panda SS (2013) Drilling of bone: a comprehensive review. J Clin Orthop Trauma 4:15–30CrossRefGoogle Scholar
  62. 62.
    Wiggins KL, Malkin S (1976) Drilling of bone. J Biomech 9:553–559CrossRefGoogle Scholar
  63. 63.
    Bertollo N, Walsh WR (2011) Drilling of bone: practicality, limitations and complications associated with surgical drill bits. In: Klika V (ed) Biomechanics in applications. InTech, LondonGoogle Scholar
  64. 64.
    Huang C-H, Jan L-C, Li R, Shih A (2007) A three-dimensional inverse problem in estimating the applied heat flux of a titanium drilling-theoretical and experimental studies. Int J Heat Mass Transf 50:3265–3277CrossRefGoogle Scholar
  65. 65.
    Agapiou JS, DeVries MF (1990) On the determination of thermal phenomena during drilling—part I. Analytical models of twist drill temperature distributions. Int J Mach Tools Manuf 30:203–215CrossRefGoogle Scholar
  66. 66.
    Agapiou JS, DeVries MF (1990) On the determination of thermal phenomena during drilling—part II. Comparison of experimental and analytical twist drill temperature distributions. Int J Mach Tools Manuf 30:217–226CrossRefGoogle Scholar
  67. 67.
    Agapiou JS, Stephenson DA (1994) Analytical and experimental studies of drill temperatures. J Eng Ind 116:54–60CrossRefGoogle Scholar
  68. 68.
    Saxena UK, DeVries MF, Wu SM (1971) Drill temperature distributions by numerical solutions. J Eng Ind 93:1057–1065CrossRefGoogle Scholar
  69. 69.
    Watanabe K, Yokoyama K, Ichimiya R (1975) Thermal analyses of the drilling process. J Jpn Soc Precis Eng 41:1078–1083CrossRefGoogle Scholar
  70. 70.
    Fuh KH (1987) Computer aided design and manufacturing of multi-facet drills. PhD dissertation, University of Wisconsin at MadisonGoogle Scholar
  71. 71.
    Chen W-C (1996) Effect of the cross-sectional shape design of a drill body on drill temperature distributions. Int Commun Heat Mass Transf 23:355–366CrossRefGoogle Scholar
  72. 72.
    Bono M, Ni J (2001) The effects of thermal distortions on the diameter and cylindricity of dry drilled holes. Int J Mach Tools Manuf 41:2261–2270CrossRefGoogle Scholar
  73. 73.
    Bono M, Ni J (2002) A model for predicting the heat flow into the workpiece in dry drilling. J Manuf Sci Eng 124:773–777CrossRefGoogle Scholar
  74. 74.
    Bono M, Ni J (2005) The location of the maximum temperature on the cutting edges of a drill. Int J Mach Tools Manuf 46:901–907CrossRefGoogle Scholar
  75. 75.
    Strenkowski JS, Hsieh CC, Shih AJ (2004) An analytical finite element technique for predicting thrust force and torque in drilling. Int J Mach Tools Manuf 44:1413–1421CrossRefGoogle Scholar
  76. 76.
    Guo YB, Dornfeld DA (1998) Finite element analysis of drilling burr minimization with a backup material. Trans NAMRI/SME 26:207–212Google Scholar
  77. 77.
    Guo YB, Dornfeld DA (2000) Finite element modeling of burr formation process in drilling 304 stainless steel. J Manuf Sci Eng 122:612–619CrossRefGoogle Scholar
  78. 78.
    Min S, Dornfeld DA, Kim JS, Shyu B (2001) Finite element modeling of burr formation in metal cutting. Mach Sci Technol 5:307–322CrossRefGoogle Scholar
  79. 79.
    Marusich TD, Usui S, Aphale R, Saini N, Li R, Shih AJ (2006) Three-dimensional finite element modeling of drilling processes. Presented at the 2006 ASME manufacturing science and engineering conference (MSEC), October 8–11, Ypsilanti, MichiganGoogle Scholar
  80. 80.
    Kalidas S, Kapoor SG, DeVor RE (2002) Influence of thermal effects on hole quality in dry drilling, part 2: thermo-elastic effects on hole quality. J Manuf Sci Eng 124:267–274CrossRefGoogle Scholar
  81. 81.
    Davidson SRH, James DF (2003) Drilling in bone: modeling heat generation and temperature distribution. J Biomech Eng 125:305–314CrossRefGoogle Scholar
  82. 82.
    Lee J, Rabin Y (2011) A new thermal model for bone drilling with applications to orthopaedic surgery. Med Eng Phys 33:1234–1244CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Albert J. Shih
    • 1
  • Bruce L. Tai
    • 2
  • Rui Li
    • 3
  1. 1.Mechanical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Mechanical EngineeringTexas A&M UniversityCollege StationUSA
  3. 3.China Aerospace Science and Technology CorporationBeijingChina

Personalised recommendations