Cognitive Radio Communication and Applications for Urban Spaces

  • Anandakumar Haldorai
  • Arulmurugan Ramu
  • Suriya Murugan
Part of the Urban Computing book series (UC)


Currently, the aspect of cognitive radio communication is globally being discussed due to its relevance in the development of urban centers. As such, radio spectrum is statically divided and allocated over both permitted and unpermitted frequencies. Cognitive radio is an ongoing concern worldwide that points out progressively adaptable and productive use of the radio spectrum. Fundamentally, it enables remote gadgets to effectively access bits of the whole radio spectrum without making any risky impedance authorized clients. The present debate on urban development considers the works on cognitive radio and means to give an extensive and independent depiction in reference to the rationale discussed in this article. Thus, this paper presents an instructional activity, which also applies past, but comprehensive literature linked to cognitive radio. Critical information of remote data frameworks is relevant for the evaluation of CR systems. Accentuation has been dedicated for CR key concerns and research analyses, which must be considered as well. This article also evaluates related technologies, institutionalization activities, and future research directions as show in this article.


Cognitive radio (CR) Radio spectrum Medium access control Spectrum decision Dynamic spectrum accessibility 


  1. 1.
    Kleinberg, M.: Authoritative sources in a hyperlinked environment. J. ACM. 46(5), 604–632 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Golbeck, J., Rothstein, M.: Linking social networks on the web with FOAF: a semantic web case study. In: AAAI 2008: Proc. of the 23rd National Conference on Artificial Intelligence, pp. 1138–1143. AAAI Press, Menlo Park (2008)Google Scholar
  3. 3.
    Norton, K.: Applying cross-functional evolutionary methodologies to web development. In: Murugesan, S., Deshpande, Y. (eds.) WebEngineering, vol. 2016, pp. 48–57. Tata McGraw-Hill Education, New Delhi (2001)Google Scholar
  4. 4.
    Jiawei, H., Chang, K.: Data mining for web intelligence. Computer. 35(11), 64–70 (2002)CrossRefGoogle Scholar
  5. 5.
    Rogan, J., Chen, D.: Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plan. 61, 301–325 (2004)CrossRefGoogle Scholar
  6. 6.
    Chan, W., Chan, P., Yeh, O.: Detecting the nature of change in an urban environment: a comparison of machine learning algorithms. Photogramm. Eng. Remote. Sens. 67, 213–225 (2001)Google Scholar
  7. 7.
    Seto, C., Kaufmann, K.: Modeling the drivers of urban land use change in the Pearl River Delta, China: integrating remote sensing with socioeconomic data. Land Econ. 79, 106–121 (2003)CrossRefGoogle Scholar
  8. 8.
    Friedman, Z., Angelici, G.: The detection of urban expansion from Landsat imagery. Remote Sens. Q. 1, 58–79 (1979)Google Scholar
  9. 9.
    Michalak, Z.: GIS in land use change analysis — integration of remotely sensed data into GIS. Appl. Geogr. 13, 28–44 (1993)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pataki, E., Alig, J., Fung, S., Golubiewski, E., Kennedy, A., McPherson, G., Nowak, J., Pouyat, V., Romero Lankao, P.: Urban ecosystems and the North American carbon cycle. Glob. Chang. Biol. 12, 2092–2102 (2006)CrossRefGoogle Scholar
  11. 11.
    Schneider, A., Friedl, A., Potere, D.: A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 4, 044003 (2009)CrossRefGoogle Scholar
  12. 12.
    Schneider, A., Friedl, A., Potere, D.: Mapping urban areas globally using MODIS 500 m data: new methods and datasets based on urban ecoregions. Remote Sens. Environ. 114, 1733–1746 (2010)CrossRefGoogle Scholar
  13. 13.
    Ehlers, M., Jadkowski, A., Howard, R., Brostuen, E.: Application of SPOT data for regional growth analysis and local planning. Photogramm. Eng. Remote. Sens. 56, 175–180 (1990)Google Scholar
  14. 14.
    Jensen, R., Toll, L.: Detecting residential land use development at the urban fringe. Photogramm. Eng. Remote. Sens. 48, 629–643 (1982)Google Scholar
  15. 15.
    Ulbricht, A., Heckendorff, D.: Satellite images for recognition of landscape and land use changes. ISPRS J. Photogramm. Remote Sens. 53, 235–243 (1998)CrossRefGoogle Scholar
  16. 16.
    Yang, X., Lo, P.: Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. Int. J. Remote Sens. 23, 1775–1798 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ehrlich, I.: On the relation between education and crime. In: Education, Income, and Human Behavior, pp. 313–338. NBER, Cambridge (1975)Google Scholar
  18. 18.
    Kennedy, B., Kawachi, I., Prothrow-Stith, D., Lochner, K., Gupta, V.: Social capital, income inequality, and firearm violent crime. Soc. Sci. Med. 47(1), 7–17 (1998)CrossRefGoogle Scholar
  19. 19.
    Patterson, E.: Poverty, income inequality, and community crime rates. Criminology. 29(4), 755–776 (1991)CrossRefGoogle Scholar
  20. 20.
    Braithwaite, J.: Crime, Shame and Reintegration. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
  21. 21.
    Wang, H., Kifer, D., Graif, C., Li, Z.: Crime rate inference with big data. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 635–644. ACM, New York (2016)CrossRefGoogle Scholar
  22. 22.
    Wang, X., Brown, D., Gerber, M.: Spatiotemporal modeling of criminal incidents using geographic, demographic, and twitter-derived information. In: Intelligence and Security Informatics (ISI), 2012 IEEE International Conference on, pp. 36–41. IEEE, Piscataway (2012)CrossRefGoogle Scholar
  23. 23.
    Wang, X., Gerber, M., Brown, D.: Automatic crime prediction using events extracted from twitter posts. In: International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction, pp. 231–238. Springer, Berlin (2012)CrossRefGoogle Scholar
  24. 24.
    Hassan, A.: Architecture recovery of web applications. Master’s Thesis, University of Waterloo (2001)Google Scholar
  25. 25.
    Conallen, J.: Building Web Applications with UML, 2nd edn. Addison-Wesley, Boston (2003)Google Scholar
  26. 26.
    Akerkar, R., Aaberge, T.: Semantically linking virtual communities. In: El Morr, C., Maret, P. (eds.) Virtual Community Building and the Information Society: Current and Future Directions, pp. 192–207. IGI Global Publishers, Harrisburg (2011)Google Scholar
  27. 27.
    Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intell. Syst. 21(3), 96–101 (2006)CrossRefGoogle Scholar
  28. 28.
    Mills, G.: Cities as agents of global change. Int. J. Climatol. 27, 1849–1857 (2007)CrossRefGoogle Scholar
  29. 29.
    Deshpande, Y., Murugesan, S., Ginige, A., Hansen, S., Schwabe, D., Gaedke, M., White, B.: Web engineering. J Web Eng. 1(1), 3–17 (2002)Google Scholar
  30. 30.
    Romero, H., Ihl, M., Rivera, A., Zalazar, P., Azocar, P.: Rapid urban growth, land-use changes and air pollution in Santiago, Chile. Atmos. Environ. 33, 4039–4047 (1999)CrossRefGoogle Scholar
  31. 31.
    Carlson, N., Arthur, T.: The impact of land use — land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective. Glob. Planet. Chang. 25, 49–65 (2000)CrossRefGoogle Scholar
  32. 32.
    de QueirozNeto, J., dos Santos, E., Vidal, C.: MSKDE-using marching squares to quickly make high quality crime hotspot maps. In: Graphics, Patterns and Images (SIBGRAPI), 2016 29th SIBGRAPI Conference on, pp. 305–312. IEEE, Piscataway (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringSri Eshwar College of EngineeringCoimbatoreIndia
  2. 2.Department of Computer Science and EngineeringPresidency UniversityYelahanka, BengaluruIndia
  3. 3.Department of Computer Science and EngineeringKPR Institute of Engineering and TechnologyCoimbatoreIndia

Personalised recommendations