Energy Efficient Network Selection for Urban Cognitive Spectrum Handovers

  • Anandakumar Haldorai
  • Arulmurugan Ramu
  • Suriya Murugan
Part of the Urban Computing book series (UC)


Energy efficient network selection for urban cognitive spectrum handover is a concurrent research that required thorough evaluation. The outcome of this research enables environmentalists to indirectly manage the emission of greenhouse gases, including the monitoring of energy costs for various handover procedures. The solutions based on cognitive radio (CR) potentially save energy for various devices and networks. Additionally, the vitality utilization of CR advancements must be considered. This paper critically evaluates the comportments by which institutionalization accomplishments can enhance the utilization of CR to both spare vitalities for portable and remote correspondences, and guarantee that the vitality utilization in CR systems and gadgets is limited. The substantial contention for such arrangements is introduced and evaluated thoroughly in this article. Cognitive radio systems will result in a high transfer speed to portable clients by the means of heterogeneous remote structures and dynamic spectrum methods. Nonetheless, CR systems present some difficulties because of the fluctuating idea of the accessible spectrum, just as the redirection prerequisites of different applications. Spectrum planning capacities can address these difficulties for the acknowledgment of this new network framework.


Cognitive radio (CR) Energy efficiency Energy consumption Green energy 


  1. 1.
    Bethell, T.: The search for artificial intelligence. Am. Spect. 39(6), 26–35 (2006)Google Scholar
  2. 2.
    Ordonez, V., Berg, T.L.: Learning high-level judgments of urban perception. In: Computer Vision– ECCV 2014, pp. 494–510. Springer, Cham (2014)CrossRefGoogle Scholar
  3. 3.
    Turban, E.: Decision Support Systems and Expert Systems. Prentice-Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  4. 4.
    Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Mateo (1993)CrossRefGoogle Scholar
  5. 5.
    Hayes-Roth, F.: Rule-based systems. Commun. ACM. 28, 921–932 (1985)CrossRefGoogle Scholar
  6. 6.
    Ng, K.C., Abramson, B.: Uncertainty management in expert systems. IEEE Intell. Syst. 5(2), 29–47 (1990)Google Scholar
  7. 7.
    Dhar, V., Stein, R.: Intelligent decision support methods. In: The Science of Knowledge Work. Prentice Hall, Upper Saddle River (1997)Google Scholar
  8. 8.
    Kawano, S., Huynh, V.N., Ryoke, M., Nakamori, Y.: A context-dependent knowledge model for evaluation of regional environment. Environ. Model. Softw. 20, 343–352 (2005)CrossRefGoogle Scholar
  9. 9.
    Janssen, R., Goosen, H., Verhoeven, M.L., Verhoeven, J.T.A., Omtzigt, A.Q.A., Maltby, E.: Decision support for integrated wetland management. Environ. Model. Softw. 20, 215–229 (2005)CrossRefGoogle Scholar
  10. 10.
    Yao, X.: Evolving artificial neural networks. Proc. IEEE. 87(9), 1423–1447 (1999)CrossRefGoogle Scholar
  11. 11.
    Hammerstrom, D.: Working with neural networks. IEEE Spectr. 30(7), 46–53 (1993)CrossRefGoogle Scholar
  12. 12.
    Jain, A.K., Mao, J., Mohiuddin, K.: Artificial neural networks: a tutorial. IEEE Comput. 29, 31–44 (1996)CrossRefGoogle Scholar
  13. 13.
    Santiago, M.S., Rodrigues, V.: Nonlinear aspects of data integration for land-cover classification in a neural network environment. Adv. Space Res. 14, 265–268 (1994)CrossRefGoogle Scholar
  14. 14.
    Metternicht, G., Gonzalez, S.: FUERO: foundations of a fuzzy exploratory model for soil erosion hazard prediction. Environ. Model. Softw. 20, 715–728 (2005)CrossRefGoogle Scholar
  15. 15.
    Buckeles, B.P., Petry, F.E.: Genetic Algorithms. IEEE Computer Society Press, Los Alamitos (1992)Google Scholar
  16. 16.
    Brown, I.: Modelling future landscape change on coastal floodplains using a rule-based GIS. Environ. Model. Softw. 21, 1479–1490 (2006)CrossRefGoogle Scholar
  17. 17.
    Watson, I., Marir, F.: Case-based, reasoning: a review. Knowl. Eng. Rev. 9, 327–354 (1994)CrossRefGoogle Scholar
  18. 18.
    Lee, B.H., Scholz, M., Horn, A.: Constructed wetlands: prediction of performance with case-based reasoning (part B). Environ. Eng. Sci. 23, 332–340 (2006)CrossRefGoogle Scholar
  19. 19.
    Fuller, R.: Introduction to Neuro-Fuzzy Systems. Physica-Verlag, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Lesser, V.R.: Multiagent systems: an emerging subdiscipline of AI. ACM Comput. Surv. 27, 340–342 (1995)CrossRefGoogle Scholar
  21. 21.
    Parrott, L., Lacroix, R., Wade, K.M.: Design considerations for the implementation of multi-agent systems in the dairy industry. Comput. Electron. Agric. 38, 79–98 (2003)CrossRefGoogle Scholar
  22. 22.
    Flores-Mendez, R.A.: Towards a standardization of multi-agent system frameworks. Crossroads. 5(4), 18–24 (1999). Scholar
  23. 23.
    Denby, B., Le Hégarat-Mascle, S.: Swarm intelligence in optimisation problems. Nucl. Instrum. Meth. Phys. Res. Sect. A. 502, 364–368 (2003)CrossRefGoogle Scholar
  24. 24.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)zbMATHGoogle Scholar
  25. 25.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B. 26, 29–41 (1996)CrossRefGoogle Scholar
  26. 26.
    Shelokar, P.S., Siarry, P., Jayaraman, V.K., Kulkarni, B.D.: Particle swarm and ant colony algorithms hybridized for improved continuous optimization. Appl. Math. Comput. 188(1), 129–142 (2007)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sutton, R., Barto, A.: Reinforcement learning: an introduction. (1998)CrossRefGoogle Scholar
  28. 28.
    Harmon, M.E., Harmon, S.S.: Reinforcement learning: a tutorial. (2000)
  29. 29.
    Kaelbling, L., Littman, M., Moore, A.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)CrossRefGoogle Scholar
  30. 30.
    Gray, A., Kilgour, R.: Frequently asked questions: hybrid systems. (1997)
  31. 31.
    El-Yacoubi, S., El-Jai, A., Jacewicz, P., Pausas, J.G.: LUCAS: an original tool for landscape modelling. Environ. Model. Softw. 18, 429–437 (2003)CrossRefGoogle Scholar
  32. 32.
    Kuo, J.T., Wang, Y.Y., Lung, W.S.: A hybrid neural-genetic algorithm for reservoir water quality management. Water Res. 40, 1367–1376 (2006)CrossRefGoogle Scholar
  33. 33.
    Huang, S.H., Zhang, H.C.: Neural-expert hybrid approach for intelligent manufacturing: a survey. Comput. Ind. 26, 107–126 (1995)CrossRefGoogle Scholar
  34. 34.
    John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: Proceedings of 11th Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufman, San Mateo (1995)Google Scholar
  35. 35.
    Kohavi, R., Quinlan, J.R., Will, K., Jan, M.: Decision-tree discovery. In: Handbook of Data Mining and Knowledge Discovery, pp. 267–276. Oxford University Press, New York (2002)Google Scholar
  36. 36.
    Bouckaert, R.: Bayesian Network Classifiers in Weka. Technical Report. Department of Computer Science, Waikato University, Hamilton (2005)Google Scholar
  37. 37.
    Kohavi, R.: Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree hybrid. In: Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD), pp. 202–207. AAAI Press, Menlo Park (1996)Google Scholar
  38. 38.
    Svensson, A.: Arterial Streets for People. Technical Report. Lund University, Department of Technology and Society, Lund (2004)Google Scholar
  39. 39.
    Yiming, Y.: An evaluation of statistical approaches to text categorization. Inf. Retr. 1(1/2), 69–90 (1999)CrossRefGoogle Scholar
  40. 40.
    Lise, G.: Learning statistical models from relational data. PhD thesis, Stanford University (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringSri Eshwar College of EngineeringCoimbatoreIndia
  2. 2.Department of Computer Science and EngineeringPresidency UniversityYelahanka, BengaluruIndia
  3. 3.Department of Computer Science and EngineeringKPR Institute of Engineering and TechnologyCoimbatoreIndia

Personalised recommendations