Artificial Intelligence and Machine Learning for Future Urban Development

  • Anandakumar Haldorai
  • Arulmurugan Ramu
  • Suriya Murugan
Part of the Urban Computing book series (UC)


Artificial intelligence methods are extensively utilized greatly as substitutes rather than more classical methods for modeling the environmental frameworks. In this chapter there will be a review of some, and how they are applied in the environment, including examples and concrete references are provided. Moreover, the methods will be case focused reasoning, fuzzy models, rule based frameworks, artificial networks, cellular automata, the swarm intelligence, multi-agents frameworks, reinforcement learning systems, and the hybrid systems. Therefore, city designers and architects allocate much time in gathering data from crucial sources. Increased augmenting of the GIS (Growth information systems) have made is effective in mapping and portraying the data collected in the laboratory, although such tools are restricted due to insufficient of complex data and inference capacities. Moreover, this chapter will state the probable chances of how artificial intelligence and the machine based learning techniques may improve the performance processes of urban planning through the provision of extensive data evaluation and inference capacities. Verifying the claim, some of the machine learning techniques have been utilized which clearly point out the type of urban settings and major streets grouping, centered on how complex semantic and spatial relationships unlike the building geometry.


Artificial intelligence Machine learning Support vector machine Fuzzy set Knowledge engineering 


  1. 1.
    Bethell, T.: The search for artificial intelligence. Am. Spect. 39(6), 26–35 (2006)Google Scholar
  2. 2.
    Goodwins, R.: The machine that wanted to be a mind. ZDNet News Portal.,,s2083911,00.html
  3. 3.
    Ordonez, V., Berg, T.L.: Learning high-level judgments of urban perception. In: Computer Vision– ECCV 2014, pp. 494–510. Springer, Cham (2014)CrossRefGoogle Scholar
  4. 4.
    Turban, E.: Decision Support Systems and Expert Systems. Prentice-Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  5. 5.
    Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Mateo (1993)CrossRefGoogle Scholar
  6. 6.
    Watson, I., Marir, F.: Case-based, reasoning: a review. Knowl. Eng. Rev. 9, 327–354 (1994)CrossRefGoogle Scholar
  7. 7.
    Lee, B.H., Scholz, M., Horn, A.: Constructed wetlands: prediction of performance with case-based reasoning (part B). Environ. Eng. Sci. 23, 332–340 (2006)CrossRefGoogle Scholar
  8. 8.
    Lee, B.H., Scholz, M., Horn, A.: Constructed wetlands: treatment of concentrated storm water runoff (part a). Environ. Eng. Sci. 23, 320–331 (2006)CrossRefGoogle Scholar
  9. 9.
    Hayes-Roth, F.: Rule-based systems. Commun. ACM. 28, 921–932 (1985)CrossRefGoogle Scholar
  10. 10.
    Ng, K.C., Abramson, B.: Uncertainty management in expert systems. IEEE Intell. Syst. 5(2), 29–48 (1990)Google Scholar
  11. 11.
    Dhar, V., Stein, R.: Intelligent decision support methods. In: The Science of Knowledge Work. Prentice Hall, Upper Saddle River (1997)Google Scholar
  12. 12.
    Kawano, S., Huynh, V.N., Ryoke, M., Nakamori, Y.: A context-dependent knowledge model for evaluation of regional environment. Environ. Model. Softw. 20, 343–352 (2005)CrossRefGoogle Scholar
  13. 13.
    Janssen, R., Goosen, H., Verhoeven, M.L., Verhoeven, J.T.A., Omtzigt, A.Q.A., Maltby, E.: Decision support for integrated wetland management. Environ. Model. Softw. 20, 215–229 (2005)CrossRefGoogle Scholar
  14. 14.
    Yao, X.: Evolving artificial neural networks. Proc. IEEE. 87(9), 1423–1447 (1999)CrossRefGoogle Scholar
  15. 15.
    Hammerstrom, D.: Working with neural networks. IEEE Spectr. 30(7), 46–53 (1993)CrossRefGoogle Scholar
  16. 16.
    Jain, A.K., Mao, J., Mohiuddin, K.: Artificial neural networks: a tutorial. IEEE Comput. 29, 31–44 (1996)CrossRefGoogle Scholar
  17. 17.
    Santiago, M.S., Rodrigues, V.: Nonlinear aspects of data integration for land-cover classification in a neural network environment. Adv. Space Res. 14, 265–268 (1994)CrossRefGoogle Scholar
  18. 18.
    Metternicht, G., Gonzalez, S.: FUERO: foundations of a fuzzy exploratory model for soil erosion hazard prediction. Environ. Model. Softw. 20, 715–728 (2005)CrossRefGoogle Scholar
  19. 19.
    Buckeles, B.P., Petry, F.E.: Genetic Algorithms. IEEE Computer Society Press, Los Alamitos (1992)Google Scholar
  20. 20.
    Brown, I.: Modelling future landscape change on coastal floodplains using a rule-based GIS. Environ. Model. Softw. 21, 1479–1490 (2006)CrossRefGoogle Scholar
  21. 21.
    Fuller, R.: Introduction to Neuro-Fuzzy Systems. Physica-Verlag, Heidelberg (2000)CrossRefGoogle Scholar
  22. 22.
    Lesser, V.R.: Multiagent systems: an emerging subdiscipline of AI. ACM Comput. Surv. 27, 340–342 (1995)CrossRefGoogle Scholar
  23. 23.
    Parrott, L., Lacroix, R., Wade, K.M.: Design considerations for the implementation of multi-agent systems in the dairy industry. Comput. Electron. Agric. 38, 79–98 (2003)CrossRefGoogle Scholar
  24. 24.
    Flores-Mendez, R.A.: Towards a standardization of multi-agent system frameworks. Crossroads. 5(4), 18–24 (1999). Scholar
  25. 25.
    Denby, B., Le Hégarat-Mascle, S.: Swarm intelligence in optimisation problems. Nucl. Instrum. Meth. Phys. Res. Sect. A. 502, 364–368 (2003)CrossRefGoogle Scholar
  26. 26.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)zbMATHGoogle Scholar
  27. 27.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B. 26, 29–41 (1996)CrossRefGoogle Scholar
  28. 28.
    Shelokar, P.S., Siarry, P., Jayaraman, V.K., Kulkarni, B.D.: Particle swarm and ant colony algorithms hybridized for improved continuous optimization. Appl. Math. Comput. 188(1), 129–142 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Sutton, R., Barto, A.: Reinforcement learning: an introduction. (1998)CrossRefGoogle Scholar
  30. 30.
    Harmon, M.E., Harmon, S.S.: Reinforcement learning: a tutorial. (2000)
  31. 31.
    Kaelbling, L., Littman, M., Moore, A.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)CrossRefGoogle Scholar
  32. 32.
    Gray, A., Kilgour, R.: Frequently asked questions: hybrid systems. (1997)
  33. 33.
    El-Yacoubi, S., El-Jai, A., Jacewicz, P., Pausas, J.G.: LUCAS: an original tool for landscape modelling. Environ. Model. Softw. 18, 429–437 (2003)CrossRefGoogle Scholar
  34. 34.
    Kuo, J.T., Wang, Y.Y., Lung, W.S.: A hybrid neural-genetic algorithm for reservoir water quality management. Water Res. 40, 1367–1376 (2006)CrossRefGoogle Scholar
  35. 35.
    Huang, S.H., Zhang, H.C.: Neural-expert hybrid approach for intelligent manufacturing: a survey. Comput. Ind. 26, 107–126 (1995)CrossRefGoogle Scholar
  36. 36.
    John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: Proceedings of 11th Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufman, San Mateo (1995)Google Scholar
  37. 37.
    Kohavi, R., Quinlan, J.R., Will, K., Jan, M.: Decision-tree discovery. In: Handbook of Data Mining and Knowledge Discovery, pp. 267–276. Oxford University Press, New York (2002)Google Scholar
  38. 38.
    Bouckaert, R.: Bayesian Network Classifiers in Weka. Technical Report. Department of Computer Science, Waikato University, Hamilton (2005)Google Scholar
  39. 39.
    Kohavi, R.: Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree hybrid. In: Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD), pp. 202–207. AAAI Press, Menlo Park (1996)Google Scholar
  40. 40.
    Svensson, A.: Arterial Streets for People. Technical Report. Lund University, Department of Technology and Society, Lund (2004)Google Scholar
  41. 41.
    Yiming, Y.: An evaluation of statistical approaches to text categorization. Inf. Retr. 1(1/2), 69–90 (1999)CrossRefGoogle Scholar
  42. 42.
    Lise, G.: Learning statistical models from relational data. PhD thesis, Stanford University (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringSri Eshwar College of EngineeringCoimbatoreIndia
  2. 2.Department of Computer Science and EngineeringPresidency UniversityYelahanka, BengaluruIndia
  3. 3.Department of Computer Science and EngineeringKPR Institute of Engineering and TechnologyCoimbatoreIndia

Personalised recommendations