A Framework for Data-Driven Augmented Reality

  • Georgia AlbuquerqueEmail author
  • Dörte Sonntag
  • Oliver Bodensiek
  • Manuel Behlen
  • Nils Wendorff
  • Marcus Magnor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11614)


This paper presents a new framework to support the creation of augmented reality (AR) applications for educational purposes in physics or engineering lab courses. These applications aim to help students to develop a better understanding of the underlying physics of observed phenomena. For each desired experiment, an AR application is automatically generated from an approximate 3D model of the experimental setup and precomputed simulation data. The applications allow for a visual augmentation of the experiment, where the involved physical quantities like vector fields, particle beams or density fields can be visually overlaid on the real-world setup. Additionally, a parameter feedback module can be used to update the visualization of the physical quantities according to actual experimental parameters in real-time. The proposed framework was evaluated on three different experiments: a Teltron tube with Helmholtz coils, an electron-beam-deflection tube and a parallel plate capacitor.


Augmented Reality Physics education Real-time interaction 



This work was supported in part by the German Science Foundation (DFG MA2555/15-1 Immersive Digital Reality and DFG INST 188/409-1 FUGG ICG Dome) and in part by the German Federal Ministry of Education and Research (01PL17043 teach4TU).


  1. 1.
    Albe, V., Venturini, P., Lascours, J.: Electromagnetic concepts in mathematical representation of physics. J. Sci. Educ. Technol. 10(2), 197–203 (2001)CrossRefGoogle Scholar
  2. 2.
    Bacca, J., Baldiris, S., Fabregat, R., Graf, S., et al.: Augmented reality trends in education: a systematic review of research and applications. J. Educ. Technol. Soc. 17(4), 133 (2014)Google Scholar
  3. 3.
    Bacca, J., Baldiris, S., Fabregat, R.: Kinshuk: framework for designing motivational augmented reality applications in vocational education and training. Australas. J. Educ. Technol. 53(3), 102 (2019)Google Scholar
  4. 4.
    Blake, A., Isard, M.: The condensation algorithm-conditional density propagation and applications to visual tracking. In: Advances in Neural Information Processing Systems, pp. 361–367 (1997)Google Scholar
  5. 5.
    Blum, T., Kleeberger, V., Bichlmeier, C., Navab, N.: mirracle: an augmented reality magic mirror system for anatomy education. In: 2012 IEEE Virtual Reality Short Papers and Posters (VRW), pp. 115–116. IEEE (2012)Google Scholar
  6. 6.
    Bodensiek, O., Sonntag, D., Wendorff, N., Albuquerque, G., Magnor, M.: Augmenting the fine beam tube: from hybrid measurements to magnetic field visualization. Phys. Teach. 57, 262 (2019)CrossRefGoogle Scholar
  7. 7.
    Farias, L., Dantas, R., Burlamaqui, A.: Educ-AR: a tool for assist the creation of augmented reality content for education. In: 2011 IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS), pp. 1–5. IEEE (2011)Google Scholar
  8. 8.
    Fortune, S.: Voronoi diagrams and delaunay triangulations. In: Handbook of Discrete and Computational Geometry, pp. 377–388. CRC Press Inc. (1997)Google Scholar
  9. 9.
    Garon, M., Boulet, P.O., Doironz, J.P., Beaulieu, L., Lalonde, J.F.: Real-time high resolution 3D data on the hololens. In: 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), pp. 189–191. IEEE (2016)Google Scholar
  10. 10.
    Garzon, J., Pavon, J., Baldiris, S.: Virtual Reality, Special Issue: VR in Education (2019)Google Scholar
  11. 11.
    Gonzalez, R.C., Woods, R.E., et al.: Digital image processing (2002)Google Scholar
  12. 12.
    Guisasola, J., Almudi, J.M., Zubimendi, J.L.: Difficulties in learning the introductory magnetic field theory in the first years of university. Sci. Educ. 88(3), 443–464 (2004)CrossRefGoogle Scholar
  13. 13.
    Ibáñez, M.B., Di Serio, Á., Villarán, D., Kloos, C.D.: Experimenting with electromagnetism using augmented reality: impact on flow student experience and educational effectiveness. Comput. Educ. 71, 1–13 (2014)CrossRefGoogle Scholar
  14. 14.
    Kapp, S., et al.: Augmenting Kirchhoff’s laws: using augmented reality and smartglasses to enhance conceptual electrical experiments for high school students. Phys. Teach. 57(1), 52–53 (2019)CrossRefGoogle Scholar
  15. 15.
    Kaufmann, H., Papp, M.: Learning objects for education with augmented reality. In: Proceedings of EDEN, pp. 160–165 (2006)Google Scholar
  16. 16.
    Li, N., Gu, Y.X., Chang, L., Duh, H.B.L.: Influences of AR-supported simulation on learning effectiveness in face-to-face collaborative learning for physics. In: 2011 11th IEEE International Conference on Advanced Learning Technologies (ICALT), pp. 320–322. IEEE (2011)Google Scholar
  17. 17.
    Lifeliqe inc. (2019).
  18. 18.
    Maloney, D.P., O’Kuma, T.L., Hieggelke, C.J., Van Heuvelen, A.: Surveying students’ conceptual knowledge of electricity and magnetism. Am. J. Phys. 69(S1), S12–S23 (2001)CrossRefGoogle Scholar
  19. 19.
    Matsutomo, S., Miyauchi, T., Noguchi, S., Yamashita, H.: Real-time visualization system of magnetic field utilizing augmented reality technology for education. IEEE Trans. Magn. 48(2), 531–534 (2012)CrossRefGoogle Scholar
  20. 20.
    Radu, I.: Augmented reality in education: a meta-review and cross-media analysis. Pers. Ubiquit. Comput. 18(6), 1533–1543 (2014)CrossRefGoogle Scholar
  21. 21.
    Strzys, M., et al.: Augmenting the thermal flux experiment: a mixed reality approach with the hololens. Phys. Teach. 55(6), 376–377 (2017)CrossRefGoogle Scholar
  22. 22.
    Sylaiou, S., Mania, K., Karoulis, A., White, M.: Exploring the relationship between presence and enjoyment in a virtual museum. Int. J. Hum Comput Stud. 68(5), 243–253 (2010)CrossRefGoogle Scholar
  23. 23.
    Yuen, S.C.Y., Yaoyuneyong, G., Johnson, E.: Augmented reality: an overview and five directions for ar in education. J. Educ. Technol. Dev. Exch. (JETDE) 4(1), 11 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Georgia Albuquerque
    • 1
    • 3
    Email author
  • Dörte Sonntag
    • 2
  • Oliver Bodensiek
    • 2
  • Manuel Behlen
    • 1
  • Nils Wendorff
    • 1
  • Marcus Magnor
    • 1
  1. 1.Computer Graphics LabTU BraunschweigBraunschweigGermany
  2. 2.Institute for Science Education ResearchTU BraunschweigBraunschweigGermany
  3. 3.Software for Space Systems and Interactive VisualizationDLRBraunschweigGermany

Personalised recommendations