Advertisement

Electron Microscopy Techniques to Study Structure/Function Relationships in Catalytic Materials

  • Álvaro Mayoral
  • Paz del AngelEmail author
  • Manuel Ramos
Chapter

Abstract

The study of atomistic structure/function relationships on matter, by achieving direct observations of their corresponding atomic structures using “electrons” in comparison of full-light spectrum, as it is usually done in conventional optic devices, has been possible with the aid of field-emission gun instruments such as scanning and transmission electron microscopes, and more importantly with the implementation of the spherical aberration correctors in the transmission equipment, a powerful tool that has gained more and more usage in the last two decades. Here, we present a series of cases of study applying this fundamental characterization technique for the understanding of catalytic active sites, morphology, and other structure/function relationships, for low-dimension catalytic materials. The chapter comprises cases of study to determine atomistic features as completed in complex zeolite crystalline structure, mixed transition metal oxides such as tungsten–zirconia (WO3–ZrO2), metallic nanoparticles, and layered transition metal sulfides which are highly used in many hydroprocessing and photocatalytic reactions, as well as some data aspects about “in situ operando” techniques as achieved during electron microscopy observations.

Keywords

Electron microscopy Catalysis Nanostructures Clusters Material science Structure and function Characterization Zeolites Oxides Transition metals 

Notes

Acknowledgements

Chapter author: Prof. Dr. Alvaro Mayoral thank FEDER-Construyendo Europa desde Aragón for research economical funding. Prof. Dr. Paz del Angel thank Instituto Mexicano del Petróleo, Mexico City, for usage of research facilities and equipment, and The Kleberg Advanced Microscopy Center of University of Texas at San Antonio for usage of electron microscopy facilities. Prof. Dr. Manuel Ramos thank Consejo Nacional de Ciencia y Tecnología, Mexico, for research economical support grant solicitation #207997; The Microelectronics Research Center of University of Texas at Austin for usage of electron microscope instrument; The Department of Physics and Mathematics of Universidad Autónoma de Ciudad Juárez for research economical support by solicitation PROMEP-Mexico grant #103.5/11/4377/NPTC/260-UACJ; and Materials Research and Technology of University of Texas at El Paso. The Centre for High-resolution Electron Microscopy (CħEM), supported by SPST of ShanghaiTech University under contract No. EM02161943 and the NSFC (21850410448, 21835002).

References

  1. 1.
    V.G. Dyukov, S.A. Nepijko, G. Schönhens, Chapter two: voltage contrast modes in a scanning electron microscope and their application. Adv. Imaging Elect. Phys. 196, 165–246 (2016)CrossRefGoogle Scholar
  2. 2.
    M. José-Yacamán, G. Díaz, A. Gómez, Electron microscopy of catalysts; the present, the future and the hopes. Catal. Today 23, 161–199 (1995)CrossRefGoogle Scholar
  3. 3.
    A.K. Datye, Electron microscopy of catalysts: recent achievements and future prospects. J. Catal. 216, 144–154 (2003)CrossRefGoogle Scholar
  4. 4.
    M.A. O’Keefe, Seeing atoms with aberration-corrected sub-Ångström electron microscopy. Ultramicroscopy 108, 196–209 (2008)CrossRefGoogle Scholar
  5. 5.
    R.R. Chianelli, A.F. Ruppert, M. José-Yacamán, A. Váquez-Zavala, HREM studies of layered transition metal sulfide catalytic materials. Catal. Today 23, 269–281 (1995)CrossRefGoogle Scholar
  6. 6.
    L.P. Hansen, E. Johnson, M. Brorson, S. Helveg, Growth mechanism for single- and multi-layer MoS2 nanocrystals. J. Phys. Chem. C 118, 22768–22773 (2014)CrossRefGoogle Scholar
  7. 7.
    R.F. Egerton, Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, 016502 (2009). 25ppCrossRefGoogle Scholar
  8. 8.
    S. Khanal, A. Spitale, N. Bhattarai, D. Bahena, J.J. Velazquez-Salazar, S. Mejía-Rosales, M. M Mariscal, M. José-Yacaman, Synthesis, characterization, and growth simulations of Cu–Pt bimetallic nanoclusters. Beilstein J. Nanotechnol. 5, 1371 (2014)CrossRefGoogle Scholar
  9. 9.
    A. Garcia, A.M. Raya, M. Mariscal, R. Esparza, M. Herrera, S.I. Molina, G. Scavello, P.L. Galindo, M. José-Yacamán, A. Ponce, Analysis of electron [] beam damage of exfoliated MoS2 sheets and quantitative HAADF-STEM imaging. Ultramicroscopy 146, 33–38 (2014)CrossRefGoogle Scholar
  10. 10.
    J.E. Evans, K.L. Jungjohann, N.D. Browning, I. Arslan, Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 11(7), 2809–2813 (2011)CrossRefGoogle Scholar
  11. 11.
    A. Primo, H. Garcia, Chem. Soc. Rev. 43, 7548–7561 (2014)CrossRefGoogle Scholar
  12. 12.
    A.F. Crønstedt, Kongl. Svenska Vetenskaps Acadademiens Handlingar, vol 17 (Elsevier, Amsterdam, 1756), p. 120Google Scholar
  13. 13.
    S. Cinar, B. Beler-Baykal, Water Sci. Technol. 51, 71–77 (2005)CrossRefGoogle Scholar
  14. 14.
    J. Weitkamp, in Handbook of heterogeneous catalysis, ed. by G. Ertl et al., (Wiley, Hoboken, NJ, 2008)Google Scholar
  15. 15.
    D.G. Barton, S.L. Soled, G.D. Meitzner, G.A. Fuentes, E. Iglesia, J. Catal. 181, 57 (1999)CrossRefGoogle Scholar
  16. 16.
    M. Hino, K. Arata, J. Chem. Soc. Chem. Commun., 1259–1260 (1988)Google Scholar
  17. 17.
    A. Martínez, G. Prieto, M.A. Arribas, P. Concepción, J.F. Sánchez-Royo, J. Catal. 248, 288 (2007)CrossRefGoogle Scholar
  18. 18.
    D.G. Barton, M. Shtein, R.D. Wilson, S.L. Soled, E. Iglesia, J. Phys. Chem. B 103, 630 (1999)CrossRefGoogle Scholar
  19. 19.
    M.L. Hernández-Pichardo, J.A. Montoya de la Fuente, P. Del Angel, A. Vargas, J. Navarrete, I. Hernández, L. Lartundo, M. González-Brambila, Appl. Cat. A: Gen. 431-432, 69 (2012)CrossRefGoogle Scholar
  20. 20.
    J.M. Hidalgo, D. Kaucky, O. Bortnovsky, R. Cerny, Z. Sobalik, RSC Adv. 5, 56625 (2015)CrossRefGoogle Scholar
  21. 21.
    D.E. López, J.G. Goodwin, D.A. Bruce, S. Furuta, Appl. Catal. A Gen. 339, 76 (2008)CrossRefGoogle Scholar
  22. 22.
    A. Guldhe, B. Singh, I. Rawat, F. Bux, Chem. Eng. Res. Des. 92, 1503 (2014)CrossRefGoogle Scholar
  23. 23.
    B.M. Reddy, M.K. Patil, G.K. Reddy, B.T. Reddy, K.N. Rao, Appl. Catal. A Gen. 332, 183 (2007)CrossRefGoogle Scholar
  24. 24.
    G. Larsen, E. Lotero, L.M. Petkovic, D.S. Shobe, J. Catal. 169, 67 (1997)CrossRefGoogle Scholar
  25. 25.
    A. Kumar, A. Ali, K.N. Vinod, A.K. Mondal, H. Hegde, A. Menon, B.H.S. Thimmappa, J. Mol. Cat. A: Chem. 378, 22 (2013)CrossRefGoogle Scholar
  26. 26.
    W. Zhou, I.E. Wachs, C.J. Kiely, Curr. Opin. Solid State Mater. Sci. 16, 10–22 (2012)CrossRefGoogle Scholar
  27. 27.
    F. Di Gregorio, V. Keller, J. Catal. 225, 45 (2004)CrossRefGoogle Scholar
  28. 28.
    R.R. Chianelli, G. Berhault, B. Torres, Unsupported transition metal sulfide catalysts: 100 years of science and application. Catal. Today 147, 275–286 (2009)CrossRefGoogle Scholar
  29. 29.
    F.C. Menza, H.M. Seip, Environ. Sci. Pol. 7, 253 (2004)CrossRefGoogle Scholar
  30. 30.
    Z.M. Wang, MoS2 materials, physics, and devices, vol 21 (Springer International Publishing, New York, 2014). ISSBN: 978-3-319-02849-1CrossRefGoogle Scholar
  31. 31.
    R.R. Chianelli, A.F. Ruppert, M. José-Yacamán, A. Vázquez-Zavala, HREM Studies of layered transition metal sulfide catalytic materials. Catal. Today 23, 269–281 (1995)CrossRefGoogle Scholar
  32. 32.
    V. An, Y. Irtegov, Tribological properties of nanolamellar MoS2 doped with copper nanoparticles. J. Nanomater. 2014, 731073 (2014)Google Scholar
  33. 33.
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)CrossRefGoogle Scholar
  34. 34.
    M. Ramos, G. Berhault, R.R. Chianelli, J.L. Enríquez-Carrejo, Angular dependence of metallic states in 2H-MoS2 slabs. Comp. Mater. Sci. 84, 18–22 (2014)CrossRefGoogle Scholar
  35. 35.
    H. Topsøe, B.S. Clausen, R. Candia, C. Wivel, S. Mørup, In situ Mössbauer emission spectroscopy studies of unsupported and supported sulfided Co-Mo hydrodesulfurization catalysts: evidence for and nature of a Co-Mo-S phase. J. Catal. 68(2), 433–452 (1981)CrossRefGoogle Scholar
  36. 36.
    M.A. Ramos, G. Berhault, D.A. Ferrer, B. Torres, R.R. Chianelli, Cat. Sci. Technol. 2, 164–178 (2012)CrossRefGoogle Scholar
  37. 37.
    R.R. Chianelli, G. Berhault, P. Santiago, D. Mendoza, A. Espinosa, J.A. Ascensio, M. José-Yacamán, Synthesis, fundamerital properties and applications of nanocrystals, sheets, nanotubes and cylinders based on layered transition metal chalcogenides. Mater. Technol. 15, 54–61 (2000)Google Scholar
  38. 38.
    M.A. Ramos, V. Correa, B. Torres, S. Flores, J.R. Farías Mancilla, R.R. Chianelli, Spherical MoS2 micro particles and their surface dispersion due to addition of cobalt promoters. Rev. Mex. Fis. 57(3), 220–223 (2011)Google Scholar
  39. 39.
    M. Ramos, D. Ferrer, E. Martinez-Soto, H. Lopez-Lippmann, B. Torres, G. Berhault, R.R. Chianelli, In-situ HRTEM study of the reactive carbide phase of Co/MoS2 catalyst. Ultramicroscopy 127, 64–69 (2013)CrossRefGoogle Scholar
  40. 40.
    G. Casillas, U. Santiago, H. Barrón, D. Alducin, A. Ponce, M. José-Yacamán, Elasticity of MoS2 sheets by mechanical deformation observed by in situ electron microscopy. J. Phys. Chem. C 119, 710–715 (2015)CrossRefGoogle Scholar
  41. 41.
    H. Jobic, Curr. Opinion Solid State Mater. Sci. 6, 415–422 (2002)CrossRefGoogle Scholar
  42. 42.
    A.N. Fitch, H. Jobic, Structural Information from Neutron Diffraction (Springer-Verlag, Heidelberg, 1999)CrossRefGoogle Scholar
  43. 43.
    E. Polak, J. Munn, P. Barnes, S.E. Tarling, C. Ritter, J. Appl. Crystallogr. 23, 258–262 (1990)CrossRefGoogle Scholar
  44. 44.
    T. Lemishko, S. Valencia, F. Rey, M. Jimenez-Ruiz, G. Sastre, J. Phys. Chem. C 120, 24904–24909 (2016)CrossRefGoogle Scholar
  45. 45.
    W. Heink, J. Karger, H. Pfeifer, K.P. Datema, A.K. Nowak, J. Chem. Soc. Faraday Trans. 88, 3505–3509 (1992)CrossRefGoogle Scholar
  46. 46.
    A.J. O’Malley, V. Garcia-Sakai, I.P. Silverwood, N. Dimitratos, S.F. Parker, R.A. Catlow, Phys. Chem. Chem. Phys. 18, 17294–17302 (2016)CrossRefGoogle Scholar
  47. 47.
    J. Klinowski, Chem. Rev. 91, 1459–1479 (1991)CrossRefGoogle Scholar
  48. 48.
    Y. Jiang, J. Huang, W. Dai, M. Hunger, Solid State Nucl. Mag. 39, 116–141 (2011)CrossRefGoogle Scholar
  49. 49.
    A. Zheng, S.J. Huang, S.B. Liu, F. Deng, Phys. Chem. Chem. Phys. 13, 14889–14901 (2011)CrossRefGoogle Scholar
  50. 50.
    L.A. Bursill, J.M. Thomas, K.J. Rao, Nature, 157–158 (1981)CrossRefGoogle Scholar
  51. 51.
    M.M.J. Treacey, J.M. Newsam, Ultramicroscopy 23, 411–420 (1987)CrossRefGoogle Scholar
  52. 52.
    O. Terasaki, T. Ohsuna, V. Alfredson, J.-O. Bovin, D. Watanabe, K. Tsuno, Ultramicroscopy 39, 238–246 (1991)CrossRefGoogle Scholar
  53. 53.
    I. Díaz, A. Mayoral, Micron 42, 512–527 (2011)CrossRefGoogle Scholar
  54. 54.
    O. Terasaki, J. Electron. Microsc. 43, 337–346 (1994)Google Scholar
  55. 55.
    O. Terasaki, J. Solid State Chem. 106, 190–200 (1993)CrossRefGoogle Scholar
  56. 56.
    A. Mayoral, T. Carey, P.A. Anderson, I. Diaz, Micropor. Mesopor. Mater. 166, 117–122 (2013)CrossRefGoogle Scholar
  57. 57.
    A. Mayoral, J.E. Readman, P.A. Anderson, J. Phys. Chem. C 117, 24485–24489 (2013)CrossRefGoogle Scholar
  58. 58.
    A. Mayoral, P.A. Anderson, I. Diaz, Micron 68, 146–151 (2015)CrossRefGoogle Scholar
  59. 59.
    A. Mayoral, M. Sanchez-Sanchez, A. Alfayate, J. Perez-Pariente, I. Diaz, Chem. Cat. Chem. 7, 3719–3724 (2015)Google Scholar
  60. 60.
    M. Haider, S. Uhlemann, J. Zach, Ultramicroscopy 81, 163 (2000)CrossRefGoogle Scholar
  61. 61.
    P.E. Baston, N. Dellby, O.L. Krivanek, Nature 418, 617–620 (2002)CrossRefGoogle Scholar
  62. 62.
    P.E. Baston, Ultramicroscopy 106, 1104 (2006)CrossRefGoogle Scholar
  63. 63.
    V. Ortalan, A. Uzun, B.C. Gates, N.D. Browning, Nat. Nanotechnol. 5, 506–510 (2010)CrossRefGoogle Scholar
  64. 64.
    A. Mayoral, T. Carey, P.A. Anderson, A. Lubk, I. Diaz, Angew. Chem. Int. Ed. 50, 11230–11233 (2011)CrossRefGoogle Scholar
  65. 65.
    K. Yoshida, K. Toyoura, K. Matsunaga, A. Nakahira, H. Kurata, Y.H. Ikuhara, Y. Sasaki, Sci. Rep. 2, 2457 (2013)CrossRefGoogle Scholar
  66. 66.
    J.D. Kistler, N. Chotigkrai, P. Xu, B. Enderle, P. Praserthdam, C.Y. Chen, N.D. Browning, B.C. Gates, Angew. Chem. Int. Ed. 53, 8904–8907 (2014)CrossRefGoogle Scholar
  67. 67.
    C. Aydin, J. Lu, A.J. Liang, C.-Y. Chen, N.D. Browing, B. Gates, Nano Lett. 11, 5537–5541 (2011)CrossRefGoogle Scholar
  68. 68.
    J. Agundez, L. Martin, A. Mayoral, J. Pérez-Pariente, Catal. Today 304, 15 (2018)CrossRefGoogle Scholar
  69. 69.
    D. Pflästerer, A.S.K. Hashmi, Chem. Soc. Rev. 45, 1331–1367 (2016)CrossRefGoogle Scholar
  70. 70.
    A. Turrina, R. Garcia, A.E. Watts, H.F. Greer, J. Bradley, W. Zhou, P.A. Cox, M.D. Shannon, A. Mayoral, J.L. Casci, P.A. Wright, Chem. Mater. 29, 2180–2190 (2017)CrossRefGoogle Scholar
  71. 71.
    I. Tiscornia, S. Irusta, P. Pradanos, C. Tellez, J. Coronas, J. Santamaria, J. Phys. Chem. C 111, 4702–4709 (2007)CrossRefGoogle Scholar
  72. 72.
    S. Uma, S. Rodrigues, I.N. Martyanov, K.J. Klabunde, Micropor. Mesopor. Mater. 67, 181–187 (2004)CrossRefGoogle Scholar
  73. 73.
    Z. Lin, J. Rocha, A. Navajas, C. Tellez, J. Coronas, J. Santamaria, Micropor. Mesopor. Mater. 67, 79–86 (2004)CrossRefGoogle Scholar
  74. 74.
    A. Mayoral, R.M. Hall, R. Jackowska, J.E. Readman, Angew. Chem. Int. Ed. 55, 16127–16131 (2016)CrossRefGoogle Scholar
  75. 75.
    W. Zhou, E.I. Ross-Medgaarden, W.V. Knowles, M.S. Wong, I.E. Wachs, C.J. Kiely, Nat. Chem. 1, 722 (2009)CrossRefGoogle Scholar
  76. 76.
    W. Zhou, N. Soultanidis, H. Xu, M.S. Wong, M. Neurock, C.J. Kiely, I.E. Wachs, ACS Catal. 7, 2181 (2017)CrossRefGoogle Scholar
  77. 77.
    S. J. Pennycook, P. D. Nellist (eds.), Scanning Transmission Electron Microscopy (Springer, New York, 2011)Google Scholar
  78. 78.
    J. Liu, Microsc. Microanal. 10, 55 (2004)CrossRefGoogle Scholar
  79. 79.
    P. W. Hawkes (ed.), Advances in Imaging and Electron Physics, vol 177 (Elsevier, Amsterdam, 2013), p. 279Google Scholar
  80. 80.
    R. Erni, Aberration-corrected imaging in transmission electron microscopy, 2nd edn. (Imperial College Press, London, 2015)CrossRefGoogle Scholar
  81. 81.
    N. Tanaka (ed.), Scanning Transmission Electron Microscopy of Nanomaterials (Imperial College Press, London, 2015)Google Scholar
  82. 82.
    P. Del Angel, M.L. Hernandez-Pichardo, J.A. Montoya de la Fuente, Catal. Today 312, 201 (2013)CrossRefGoogle Scholar
  83. 83.
    C.L. Jia, M. Lentzen, K. Urban, Microsc. Microanal. 10, 174 (2004)CrossRefGoogle Scholar
  84. 84.
    F. L. Deepak, A. Mayoral, R. Arenal (eds.), Advanced Transmission Electron Microscopy (Springer, New York, 2015)Google Scholar
  85. 85.
    P. Li, J. Liu, N. Nag, P.A. Crozier, Appl. Catal. A Gen. 307, 212–221 (2006)CrossRefGoogle Scholar
  86. 86.
    J. Ramírez, F. Sánchez-Minero, Catal. Today 130, 267–271 (2008)CrossRefGoogle Scholar
  87. 87.
    M.H. Siadati, G. Alonso, B. Torres, R.R. Chianelli, Appl. Catal. A Gen. 305, 160–168 (2006)CrossRefGoogle Scholar
  88. 88.
    C. Geantet, Y. Soldo, C. Glasson, N. Matsubayashi, M. Lacroix, O. Proux, O. Ulrich, J.L. Hazemann, In situ QEXAFS investigation at Co K-edge of the sulfidation of a CoMo/Al2O3 hydrotreating catalyst. Catal. Lett. 73, 95 (2001)CrossRefGoogle Scholar
  89. 89.
    G. Berhault, A. Mehta, A.C. Pavel, J.Z. Yang, L. Rendon, M.J. Yácaman, L.C. Araiza, A.D. Moller, R.R. Chianelli, The role of structural carbon in transition metal sulfides hydrotreating catalysts. J. Catal. 198(1), 9–19 (2001)CrossRefGoogle Scholar
  90. 90.
    Manuel Ramos, Gilles Berhault, Jose Rurik Farias, Jose Trinidad Elizalde, Domingo Ferrer, Brenda Torres and R. R. Chianelli, Symposium EE, Conference Proceedings MRS Fall Meeting (ID: 913573- EE06-02.R1), (2010)Google Scholar
  91. 91.
    J.A. Rodriguez, J. Hrbek, Acc. Chem. Res. 32(9), 719–728 (1999)CrossRefGoogle Scholar
  92. 92.
    H. Topsøe, J. Catal. 216, 155–164 (2003)CrossRefGoogle Scholar
  93. 93.
  94. 94.
    G. Berhault et al., J. Catal. 198, 9–19 (2001)CrossRefGoogle Scholar
  95. 95.
    Topsøe, H.; Clausen, B. S.; Massoth, F. E., Springer-Verlag: Berlin, (1996), ISBN 3-540-60380-8. A Review of Deep Hydrodesulfurization Catalysis.Google Scholar
  96. 96.
    E. Stavitskia, M. Bert, Weckhuysen. Chem. Soc. Rev. 39, 4557–4559 (2010)CrossRefGoogle Scholar
  97. 97.
    K. Castillo, F. Manciu, J.G. Parsons, R.R. Chianelli, J. Mater. Res. 22(10), 2747–2757 (2007)CrossRefGoogle Scholar
  98. 98.
    P.M. Ajayan, L.D. Marks, Phys. Rev. Lett. 80, 585 (1998)Google Scholar
  99. 99.
    Z. Zhang, D. Su, Ultramicroscopy 109, 766 (2009)CrossRefGoogle Scholar
  100. 100.
    G. Berhault, L. Cota Araiza, A. Duarte Moller, A. Mehta, R.R. Chianelli, Catal. Lett. 78, 81 (2002)CrossRefGoogle Scholar
  101. 101.
    G.J. van Gurp, C. Langereis, J. Appl. Phys. 46, 4301 (1975)CrossRefGoogle Scholar
  102. 102.
    H. Jobic, A. Tuel, M. Krossner, J. Sauer, J. Phys. Chem. 100, 19545 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for High-resolution Electron Microscopy (CћEM), School of Physical Science and Technology (SPST)ShanghaiTech UniversityShanghai 201210China
  2. 2.Laboratorio de Microscopía ElectrónicaInstituto Mexicano del PetróleoCiudad de MéxicoMexico
  3. 3.Departamento de Física y Matemáticas, Instituto de Ingeniería y TecnologíaUniversidad Autónoma de Cd. JuárezChihuahuaMexico

Personalised recommendations