Skip to main content

Design and Architecture of an Affordable Optical Routing - Multi-user VR System with Lenticular Lenses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11613)


One of the all time issues with Virtual Reality systems regardless if they are head-mounted or projection based is that they can only provide perspective correctness to one user. This limitation affects collaborative work which is the standard in any industry. Several approaches have been proposed to generate perspective correct images for different users but not only are they highly complex but also require lots of custom circuitry. On this paper we present the design, architecture and the mathematical background of an affordable optical routing multi user VR system that uses lenticular lenses for separating users and providing perspective correct images.


  • Multi-user VR
  • Lenticular lenses
  • Computer graphics

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Szalavari, Z., Schmalstieg, D., Fuhrmann, A., Gervautz, M.: Studierstube: an environment for collaboration in augmented reality. Virtual Reality 3(1), 37–48 (1998)

    CrossRef  Google Scholar 

  2. Pollock, B., Burton, M., Kelly, J.W., Gilbert, S., Winer, E.: The right view from the wrong location: depth perception in stereoscopic multi-user virtual environments. IEEE Transact. Visualization Comput. Graphics 18(4), 581–588 (2012)

    CrossRef  Google Scholar 

  3. Chen, K.B., Kimmel, R.A., Bartholomew, A., Ponto, K., Gleicher, M.L., Radwin, R.G.: Manually locating physical and virtual reality objects. Hum. Factors 56(6), 1163–1176 (2014)

    CrossRef  Google Scholar 

  4. Bolas, M., McDowall, I., Corr, D.: New research and explorations into multiuser immersive display systems. IEEE Comput. Graphics Appl. 24(1), 18–21 (2004)

    CrossRef  Google Scholar 

  5. Lenticular lens. Accessed 7 Feb 2019

  6. Huxor, A., Lansdown, J.: The design of virtual environments with particular reference to VRML

    Google Scholar 

  7. Choosing the correct lenticular lens sheet. Accessed 5 Feb 2019

  8. Lenticular Effects. Accessed 20 Jan 2019

  9. Little, G.R., Gustafson, S.C., Nikolaou, V.E.: Multiperspective autostereoscopic display. In Proceedings SPIE, vol. 2219, pp. 388–394 (1994)

    Google Scholar 

  10. van Berkel, C., Clarke, J.A.: Characterization and optimization of 3D-LCD Module design. In: Proceedings of SPIE, 3012, 179-186 (1997)

    Google Scholar 

  11. Van Berkel, C.: Image preparation for 3D-LCD. In: Proceedings of SPIE, vol. 3639(1), pp. 84–91 (1999)

    Google Scholar 

  12. Matsumoto, K., Honda, T.: Research of 3D display using anamorphic optic. Proc. SPIE 3012, 199–207 (1997)

    CrossRef  Google Scholar 

  13. Omura, K., Shiwa, S., Miyasato, T.: Lenticular autostereoscopic display system: multiple images for multiple viewers. J. Soc. Inf. Disp. 6(4), 313–324 (1998)

    CrossRef  Google Scholar 

  14. Lipton, L., Feldman, M.: A new autostereoscopic display technology: the SynthaGram. In: Proceedings of SPIE, vol. 4660, pp. 229–235 (2002)

    Google Scholar 

  15. Matusik, W., Pfister, H.: 3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. ACM Transact. Graph. (TOG) 23(3), 814–824 (2004)

    CrossRef  Google Scholar 

  16. Nguyen, D., Canny, J.: MultiView: spatially faithful group video conferencing. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 799–808. ACM (2005)

    Google Scholar 

  17. Nguyen, D.T., Canny, J.: Multiview: improving trust in group video conferencing through spatial faithfulness. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 1465–1474. ACM (2007)

    Google Scholar 

  18. Takaki, Y.: Thin-type natural three-dimensional display with 72 directional images. In: Proceedings of SPIE, vol. 5664, pp. 56–63 (2005)

    Google Scholar 

  19. Nakanuma, H., Kamei, H., Takaki, Y.: Natural 3D display with 128 directional images used for human-engineering evaluation. eye, 3, 3D (2005)

    Google Scholar 

  20. Kikuta, K., Takaki, Y.: Development of SVGA resolution 128-directional display. In: Proceedings of SPIE, vol. 6490, p. 64900U (2007)

    Google Scholar 

  21. Takaki, Y.: Super multi-view display with 128 viewpoints and viewpoint formation. In: Proceedings of SPIE, vol. 7237, p. 72371T (2009)

    Google Scholar 

  22. Takaki, Y., Yokoyama, O., Hamagishi, G.: Flat panel display with slanted pixel arrangement for 16-view display. In: Proceedings of SPIE, vol. 7237(723708), pp. 1–8 (2009)

    Google Scholar 

  23. Takaki, Y., Nago, N.: Multi-projection of lenticular displays to construct a 256-view super multi-view display. Opt. Express 18(9), 8824–8835 (2010)

    CrossRef  Google Scholar 

  24. Surman, P., et al.: Head tracked single and multi-user autostereoscopic displays. In: 3rd European Conference on Visual Media Production, 2006. CVMP 2006. IET (2006)

    Google Scholar 

  25. Brar, R.S., et al.: Laser-based head-tracked 3D display research. J. Dis. Technol. 6(10), 531–543 (2010)

    CrossRef  Google Scholar 

  26. Brar, R.S., et al.: Multi-user glasses free 3D display using an optical array. In: 2010 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video. IEEE (2010)

    Google Scholar 

  27. Kooima, R., et al.: A multi-viewer tiled autostereoscopic virtual reality display. In: Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology. ACM (2010)

    Google Scholar 

  28. Zang, S.F., et al.: A frontal multi-projection autostereoscopic 3D display based on a 3D-image-guided screen. J. Dis. Technol. 10(10), 882–886 (2014)

    CrossRef  Google Scholar 

  29. AmBrSoft: Intersection of a circle and a line (2018)., Accessed 20 Nov 2018

  30. Attila’s Projects: Circle and Line Intersection (2018). Accessed 20 Nov 2018

  31. De Greve, B.: Reflections and refractions in ray tracing (2006). Accessed 16 Oct 2014

    Google Scholar 

  32. Change of basis. change_basis_Narcowich.pdf. Accessed 12 Nov 2018

  33. Harvey Mudd College Math Tutorial: Change of basis. Accessed 6 Nov 2018

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Juan Sebastian Munoz-Arango .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Munoz-Arango, J.S., Reiners, D., Cruz-Neira, C. (2019). Design and Architecture of an Affordable Optical Routing - Multi-user VR System with Lenticular Lenses. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2019. Lecture Notes in Computer Science(), vol 11613. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25964-8

  • Online ISBN: 978-3-030-25965-5

  • eBook Packages: Computer ScienceComputer Science (R0)