Skip to main content

Upper Limb Rehabilitation with Virtual Environments

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2019)

Abstract

In this article an application is developed based on 3D environments for the upper limbs rehabilitation, with the aim of performing the measurement of rehabilitation movements that the patient makes. A robotic glove is used for virtualized the movements with the hand. The hand movements are sent to a mathematical processing software which runs an algorithm to determine if the rehabilitation movement is right. Through virtual reality environments, the injured patients see the correct way to perform the movement and also shows the movements that the patient makes with the robotic glove prototype. This system allows to evaluate the protocol of upper limbs rehabilitation, with the continuous use of this system the injured patient can see how his condition evolves after performing several times the proposed virtual tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roy, R., Sarkar, M.: Knowledge, firm boundaries, and innovation: mitigating the incumbent’s curse during radical technological change: mitigating incumbent’s curse during radical discontinuity. Strateg. Manag. J. 37, 835–854 (2016)

    Article  Google Scholar 

  2. Van der Loos, H.F.M., Reinkensmeyer, D.J., Guglielmelli, E.: Rehabilitation and Health Care Robotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics. SHB, pp. 1685–1728. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_64

    Chapter  Google Scholar 

  3. Meng, W., Liu, Q., Zhou, Z., Ai, Q., Sheng, B., Xie, S.: (Shane): Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics 31, 132–145 (2015)

    Article  Google Scholar 

  4. Vanoglio, F., et al.: Feasibility and efficacy of a robotic device for hand rehabilitation in hemiplegic stroke patients: a randomized pilot controlled study. Clin. Rehabil. 31, 351–360 (2017)

    Article  Google Scholar 

  5. Chiri, A., Vitiello, N., Giovacchini, F., Roccella, S., Vecchi, F., Carrozza, M.C.: Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation. IEEE/ASME Trans. Mechatron. 17, 884–894 (2012)

    Article  Google Scholar 

  6. In, H., Kang, B.B., Sin, M., Cho, K.-J.: Exo-Glove: a wearable robot for the hand with a soft tendon routing system. IEEE Robot. Autom. Mag. 22, 97–105 (2015)

    Article  Google Scholar 

  7. Borboni, A., Mor, M., Faglia, R.: Gloreha—hand robotic rehabilitation: design, mechanical model, and experiments. J. Dyn. Syst. Meas. Control 138, 111003 (2016)

    Article  Google Scholar 

  8. Mourtzis, D., Zogopoulos, V., Vlachou, E.: Augmented reality application to support remote maintenance as a service in the robotics industry. Procedia CIRP 63, 46–51 (2017)

    Article  Google Scholar 

  9. Zorcec, T., Robins, B., Dautenhahn, K.: Getting engaged: assisted play with a humanoid robot Kaspar for children with severe autism. In: Kalajdziski, S., Ackovska, N. (eds.) ICT 2018. CCIS, vol. 940, pp. 198–207. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00825-3_17

    Chapter  Google Scholar 

  10. Seo, N.J., Arun Kumar, J., Hur, P., Crocher, V., Motawar, B., Lakshminarayanan, K.: Usability evaluation of low-cost virtual reality hand and arm rehabilitation games. J. Rehabil. Res. Dev. 53, 321–334 (2016)

    Article  Google Scholar 

  11. Xiloyannis, M., Cappello, L., Khanh, D.B., Yen, S.-C., Masia, L.: Modelling and design of a synergy-based actuator for a tendon-driven soft robotic glove. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 1213–1219. IEEE, Singapore (2016)

    Google Scholar 

  12. Ben-Tzvi, P., Ma, Z.: Sensing and force-feedback exoskeleton (SAFE) robotic glove. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 992–1002 (2015)

    Article  Google Scholar 

  13. Polygerinos, P., Galloway, K.C., Sanan, S., Herman, M., Walsh, C.J.: EMG controlled soft robotic glove for assistance during activities of daily living. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 55–60. IEEE, Singapore (2015)

    Google Scholar 

  14. Guindo, J., Martínez-Ruiz, M.D., Gusi, G., Punti, J., Bermúdez, P., Martínez-Rubio, A.: Métodos diagnósticos de la enfermedad arterial periférica. Importancia del índice tobillo-brazo como técnica de criba. Revista Española de Cardiología 09, 11–17 (2009)

    Article  Google Scholar 

  15. Chen, D., Liu, H., Ren, Z.: Application of wearable device HTC VIVE in upper limb rehabilitation training. In: 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), pp. 1460–1464. IEEE, Xi’an (2018)

    Google Scholar 

  16. Li, Q., Wang, D., Du, Z., Sun, L.: A novel rehabilitation system for upper limbs. In: 2005 27th Annual Conference on IEEE Engineering in Medicine and Biology, pp. 6840–6843. IEEE, Shanghai (2005)

    Google Scholar 

  17. Duarte, E., et al.: Rehabilitación del ictus: modelo asistencial. Rehabilitación 44, 60–68 (2010)

    Article  Google Scholar 

  18. Shen, J., Bao, S.-D., Yang, L.-C., Li, Y.: The PLR-DTW method for ECG based biometric identification. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5248–5251. IEEE, Boston (2011)

    Google Scholar 

  19. Piyush Shanker, A., Rajagopalan, A.N.: Off-line signature verification using DTW. Pattern Recogn. Lett. 28, 1407–1414 (2007)

    Article  Google Scholar 

Download references

Acknowledgment

This work was financed in part by Universidad Tecnica de Ambato (UTA) and their Research and Development Department under project CONIN-P-0167-2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo V. Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caiza, G., Calapaqui, C., Regalado, F., Saltos, L.F., Garcia, C.A., Garcia, M.V. (2019). Upper Limb Rehabilitation with Virtual Environments. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2019. Lecture Notes in Computer Science(), vol 11613. Springer, Cham. https://doi.org/10.1007/978-3-030-25965-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25965-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25964-8

  • Online ISBN: 978-3-030-25965-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics