Advertisement

Semantic Contextual Personalization of Virtual Stores

  • Krzysztof WalczakEmail author
  • Jakub Flotyński
  • Dominik Strugała
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11613)

Abstract

Virtual stores and showrooms gain increasing attention in e-commerce, marketing and merchandising to investigate customers’ behavior, preferences and the usefulness of shopping and exhibition spaces. Although virtual stores may be designed using numerous available 3D modeling tools and game engines, efficient methods and tools enabling development and personalization of virtual stores are still lacking. In this paper, we propose a novel approach to the development of personalizable contextual virtual stores that can be generated and configured on-demand, using interfaces based on semantic web technologies. A virtual store model is created as a combination of three elements: an exposition model, a collection of product models, and a virtual store configuration. The first element visually reflects an existing or imaginary 3D store layout. The second element contains 3D models of all products that can be presented in the exposition. The third element is an ontology, which connects the two previous elements using domain-specific knowledge and reasoning. Based on a virtual store model, a personalized virtual store is generated in response to a specific user’s request.

Keywords

Virtual reality Stores Showrooms Immersive visualization User interfaces E-commerce Marketing Merchandising 

References

  1. 1.
    Alpcan, T., Bauckhage, C., Kotsovinos, E.: Towards 3D internet: why, what, and how? In: 2007 International Conference on Cyberworlds, CW 2007, pp. 95–99. IEEE (2007)Google Scholar
  2. 2.
    Alshaer, A., Regenbrecht, H., O’Hare, D.: Investigating visual dominance with a virtual driving task. In: 2015 IEEE Virtual Reality (VR), pp. 145–146, March 2015Google Scholar
  3. 3.
    Borusiak, B., Pierański, B., Strykowski, S.: Perception of in-store assortment exposure. Stud. Ekon. 334, 108–119 (2017)Google Scholar
  4. 4.
    Chaudhuri, S., Kalogerakis, E., Giguere, S., Funkhouser, T.: Attribit: content creation with semantic attributes. In: Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, pp. 193–202. ACM (2013)Google Scholar
  5. 5.
    Cortes, G., Marchand, E., Ardouinz, J., Lécuyer, A.: Increasing optical tracking workspace of VR applications using controlled cameras. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI), pp. 22–25, March 2017Google Scholar
  6. 6.
    Dachselt, R., Hinz, M., Meissner, K.: Contigra: an XML-based architecture for component-oriented 3D applications. In: Proceedings of the Seventh International Conference on 3D Web Technology, Web3D 2002, pp. 155–163. ACM, New York (2002)Google Scholar
  7. 7.
    Dassault Systèmes: 3D ContentCentral (2017). https://www.3dcontentcentral.com/
  8. 8.
    De Troyer, O., Bille, W., Romero, R., Stuer, P.: On generating virtual worlds from domain ontologies. In: Proceedings of the 9th International Conference on Multi-Media Modeling, Taipei, Taiwan, pp. 279–294 (2003)Google Scholar
  9. 9.
    Drap, P., Papini, O., Sourisseau, J.-C., Gambin, T.: Ontology-based photogrammetric survey in underwater archaeology. In: Blomqvist, E., Hose, K., Paulheim, H., Ławrynowicz, A., Ciravegna, F., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10577, pp. 3–6. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70407-4_1CrossRefGoogle Scholar
  10. 10.
    Flotyński, J., Walczak, K.: Ontology-based creation of 3D content in a service-oriented environment. In: Abramowicz, W. (ed.) BIS 2015. LNBIP, vol. 208, pp. 77–89. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19027-3_7CrossRefGoogle Scholar
  11. 11.
    Flotyński, J., Walczak, K.: Ontology-based representation and modelling of synthetic 3D content: a state-of-the-art review. Comput. Graph. Forum (2017).  https://doi.org/10.1111/cgf.13083CrossRefGoogle Scholar
  12. 12.
    Gebhardt, S., et al.: FlapAssist: how the integration of VR and visualization tools fosters the factory planning process. In: 2015 IEEE Virtual Reality (VR), pp. 181–182, March 2015Google Scholar
  13. 13.
    Hassouneh, D., Brengman, M.: Retailing in social virtual worlds: developing a typology of virtual store atmospherics (2015)Google Scholar
  14. 14.
    Highend3D: High Quality 3D Models, Scripts, Plugins and More! (2017). https://www.highend3d.com/
  15. 15.
    Kitson, A., Riecke, B.E., Hashemian, A.M., Neustaedter, C.: NaviChair: evaluating an embodied interface using a pointing task to navigate virtual reality. In: Proceedings of the 3rd ACM Symposium on Spatial User Interaction, SUI 2015, pp. 123–126. ACM, New York (2015).  https://doi.org/10.1145/2788940.2788956
  16. 16.
    Latoschik, M.E., Blach, R., Iao, F.: Semantic modelling for virtual worlds a novel paradigm for realtime interactive systems? In: VRST, pp. 17–20 (2008)Google Scholar
  17. 17.
    LaViola Jr., J.J.: Context aware 3D gesture recognition for games and virtual reality. In: ACM SIGGRAPH 2015 Courses, SIGGRAPH 2015, pp. 10:1–10:61. ACM, New York (2015).  https://doi.org/10.1145/2776880.2792711
  18. 18.
    Lee, K.C., Chung, N.: Empirical analysis of consumer reaction to the virtual reality shopping mall. Comput. Hum. Behav. 24(1), 88–104 (2008). http://www.sciencedirect.com/science/article/pii/S0747563207000155CrossRefGoogle Scholar
  19. 19.
    Monect: Monect PC remote (2017). https://www.monect.com/
  20. 20.
    Nielson, G.M., Olsen Jr., D.R.: Direct manipulation techniques for 3D objects using 2D locator devices. In: Proceedings of the 1986 Workshop on Interactive 3D Graphics, I3D 1986, pp. 175–182. ACM, New York (1987).  https://doi.org/10.1145/319120.319134
  21. 21.
    Pellens, B., De Troyer, O., Kleinermann, F.: CoDePA: a conceptual design pattern approach to model behavior for X3D worlds. In: Proceedings of the 13th International Symposium on 3D Web Technology, Web3D 2008, pp. 91–99. ACM, New York (2008).  https://doi.org/10.1145/1394209.1394229
  22. 22.
    Perez-Gallardo, Y., Cuadrado, J.L.L., Crespo, Á.G., de Jesús, C.G.: GEODIM: a semantic model-based system for 3D recognition of industrial scenes. In: Alor-Hernández, G., Valencia-García, R. (eds.) Current Trends on Knowledge-Based Systems. ISRL, vol. 120, pp. 137–159. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-51905-0_7CrossRefGoogle Scholar
  23. 23.
    Pirker, J., Pojer, M., Holzinger, A., Gütl, C.: Gesture-based interactions in video games with the leap motion controller. In: Kurosu, M. (ed.) HCI 2017. LNCS, vol. 10271, pp. 620–633. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58071-5_47CrossRefGoogle Scholar
  24. 24.
    Piumsomboon, T., Lee, G., Lindeman, R.W., Billinghurst, M.: Exploring natural eye-gaze-based interaction for immersive virtual reality. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI), pp. 36–39, March 2017Google Scholar
  25. 25.
    Polys, N., Visamsetty, S., Battarechee, P., Tilevich, E.: Design patterns in componentized scenegraphs. In: Proceedings of SEARIS. Shaker Verlag (2009)Google Scholar
  26. 26.
    Rea, A., White, D.: The Layered Virtual Reality Commerce System (LaVRCS): an approach to creating viable VRcommerce sites. In: MWAIS 2006 Proceedings, vol. 11. AISeL (2006)Google Scholar
  27. 27.
    Roupé, M., Bosch-Sijtsema, P., Johansson, M.: Interactive navigation interface for virtual reality using the human body. Comput. Environ. Urban Syst. 43(Suppl. C), 42–50 (2014). http://www.sciencedirect.com/science/article/pii/S0198971513000884CrossRefGoogle Scholar
  28. 28.
    Sikos, L.F.: 3D model indexing in videos for content-based retrieval via X3D-based semantic enrichment and automated reasoning. In: Proceedings of the 22nd International Conference on 3D Web Technology, p. 19. ACM (2017)Google Scholar
  29. 29.
    Sokołowski, J., Walczak, K.: Semantic modelling of user interactions in virtual reality environments. In: Camarinha-Matos, L.M., Adu-Kankam, K.O., Julashokri, M. (eds.) DoCEIS 2018. IAICT, vol. 521, pp. 18–27. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78574-5_2CrossRefGoogle Scholar
  30. 30.
    Spagnuolo, M., Falcidieno, B.: 3D media and the semantic web. IEEE Intell. Syst. 24(2), 90–96 (2009)CrossRefGoogle Scholar
  31. 31.
    Statista: Retail e-commerce sales worldwide from 2014 to 2021 (2018). https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/
  32. 32.
    Thomann, G., Nguyen, D.M.P., Tonetti, J.: Expert’s evaluation of innovative surgical instrument and operative procedure using haptic interface in virtual reality. In: Matta, A., Li, J., Sahin, E., Lanzarone, E., Fowler, J. (eds.) Proceedings of the International Conference on Health Care Systems Engineering. PROMS, vol. 61, pp. 163–173. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-01848-5_13CrossRefGoogle Scholar
  33. 33.
    Trellet, M., Férey, N., Flotyński, J., Baaden, M., Bourdot, P.: Semantics for an integrative and immersive pipeline combining visualization and analysis of molecular data. J. Integr. Bioinform. 15(2), 1–19 (2018)CrossRefGoogle Scholar
  34. 34.
    Trellet, M., Ferey, N., Baaden, M., Bourdot, P.: Interactive visual analytics of molecular data in immersive environments via a semantic definition of the content and the context. In: 2016 Workshop on Immersive Analytics (IA), pp. 48–53. IEEE (2016)Google Scholar
  35. 35.
    TurboSquid Inc.: 3D Models for Professionals (2017). https://www.turbosquid.com/
  36. 36.
    Unity Technologies: Asset Store (2017). https://www.assetstore.unity3d.com/en/
  37. 37.
    Van Gool, L., Leibe, B., Müller, P., Vergauwen, M., Weise, T.: 3D challenges and a non-in-depth overview of recent progress. In: 3DIM, pp. 118–132 (2007)Google Scholar
  38. 38.
    Van Kerrebroeck, H., Brengman, M., Willems, K.: When brands come to life: experimental research on the vividness effect of virtual reality in transformational marketing communications. Virtual Real. 21(4), 177–191 (2017).  https://doi.org/10.1007/s10055-017-0306-3CrossRefGoogle Scholar
  39. 39.
    Visamsetty, S.S.S., Bhattacharjee, P., Polys, N.: Design patterns in X3D toolkits. In: Proceedings of the 13th International Symposium on 3D Web Technology, Web3D 2008, pp. 101–104. ACM, New York (2008).  https://doi.org/10.1145/1394209.1394230
  40. 40.
    W3C: SWRL. On-line (2004). http://www.w3.org/Submission/SWRL/
  41. 41.
    W3C: SPARQL query language for RDF (2008). http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
  42. 42.
  43. 43.
  44. 44.
  45. 45.
    Walczak, K.: Flex-VR: configurable 3D web applications. In: Proceedings of the Conference on Human System Interactions, pp. 135–140. IEEE (2008)Google Scholar
  46. 46.
    Walczak, K.: Structured design of interactive VR applications. In: Proceedings of the 13th International Symposium on 3D Web Technology, Web3D 2008, pp. 105–113. ACM, New York (2008).  https://doi.org/10.1145/1394209.1394231
  47. 47.
    Walczak, K.: Semantics-supported collaborative creation of interactive 3D content. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 385–401. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60928-7_33CrossRefGoogle Scholar
  48. 48.
    Walczak, K., Flotyński, J.: On-demand generation of 3D content based on semantic meta-scenes. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2014. LNCS, vol. 8853, pp. 313–332. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13969-2_24CrossRefGoogle Scholar
  49. 49.
    Walczak, K., Flotyński, J.: Semantic query-based generation of customized 3D scenes. In: Proceedings of the 20th International Conference on 3D Web Technology, Web3D 2015, pp. 123–131. ACM, New York (2015).  https://doi.org/10.1145/2775292.2775311
  50. 50.
    Zahariadis, T., Daras, P., Laso-Ballesteros, I.: Towards future 3D media internet. In: NEM Summit, pp. 13–15 (2008)Google Scholar
  51. 51.
    Zielasko, D., Neha, N., Weyers, B., Kuhlen, T.W.: A reliable non-verbal vocal input metaphor for clicking. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI), pp. 40–49, March 2017Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Poznań University of Economics and BusinessPoznańPoland

Personalised recommendations