We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Electric Power System with Renewable Generation | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Electric Power System with Renewable Generation

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Modeling and Optimization of Interdependent Energy Infrastructures

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

During the past decades, the advantages of renewable generation as clean and low-cost energy resources have inspired the dramatic integration of wind and solar energy into power systems. Unlike conventional units whose generation capacity is constant, the maximum output of wind turbines and PV panels is affected by the wind speed and solar irradiance intensity, which are beyond the control of system operators, and thus challenges the operation of power systems. This chapter will mainly focus on the operational-level issues in electric power systems with stochastic renewable generation in the time frame of one day, and elucidate models and approaches for three most fundamental problems in power system operation. The first one is the optimal power flow problem, which is solved every few minutes with real-time measurements on system loads and renewable generations, and determines steady-state distribution of bus voltages and line power flows under the most cost-effective energy production pattern. The second one is the economic dispatch, which is solved every one or a few hours and provides generation and reserve schedules for the upcoming periods. The third one is the unit commitment, which is used to clear a day-ahead power market and determine on-off status of generators in each time slot. Volatility and intermittency of renewable generation are considered in the latter two problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wood, A.J., Wollenberg, B.F.: Power Generation, Operation, and Control, 2nd edn. Wiley, New York (1996)

    Google Scholar 

  2. Zhu, J.: Optimization of Power System Operation, 2nd edn. Wiley, Hoboken (2015)

    Google Scholar 

  3. Zimmerman, R.D. http://www.pserc.cornell.edu//matpower/

  4. Wu, T., Alaywan, Z., Papalexopoulos, A.D.: Locational marginal price calculations using the distributed-slack power-flow formulation. IEEE Trans. Power Syst. 20(2), 1188–1190 (2005)

    Article  Google Scholar 

  5. Tong, S., Miu, K.N.: A network-based distributed slack bus model for DGs in unbalanced power flow studies. IEEE Trans. Power Syst. 20(2), 835–842 (2005)

    Article  Google Scholar 

  6. Tinney, W.F., Hart, C.E.: Power flow solution by Newton’s method. IEEE Trans. Power App. Syst. 86(11), 1449–1460 (1967)

    Article  Google Scholar 

  7. Le Nguyen, H.: Newton-Raphson method in complex form. IEEE Trans. Power Syst. 12(3), 1355–1359 (1997)

    Article  Google Scholar 

  8. Stott, B., Alsaç, O.: Fast decoupled load flow. IEEE Trans. Power Appl. Syst. 93(3), 859–869 (1974)

    Article  Google Scholar 

  9. Wu, F.: Theoretical study of the convergence of the fast decoupled load flow. IEEE Trans. Power Appl. Syst. 96(1), 268–275 (1977)

    Article  Google Scholar 

  10. Van Amerongen, R.A.M.: A general-purpose version of the fast decoupled load flow. IEEE Trans. Power Syst. 4(2), 760–770 (1989)

    Article  Google Scholar 

  11. Monticelli, A.J., Garcia, A., Saavedra, O.R.: Fast decoupled load flow: hypothesis, derivations, and testing. IEEE Trans. Power Syst. 5(4), 1425–1431 (1990)

    Article  Google Scholar 

  12. Stott, B., Jardim, J., Alsaç, O.: DC power flow revisited. IEEE Trans. Power Syst. 24(3), 1290–1300 (2009)

    Article  Google Scholar 

  13. Coffrin, C., Van Hentenryck, P.: A linear-programming approximation of AC power flows. INFORMS J. Comput. 26(4), 718–734 (2014)

    Article  MATH  Google Scholar 

  14. Jabr, R.A.: Radial distribution load flow using conic programming. IEEE Trans. Power Syst. 21(3), 1458–1459 (2006)

    Article  MathSciNet  Google Scholar 

  15. Esposito, A.G., Ramos, E.R.: Reliable load flow technique for radial distribution networks. IEEE Trans. Power Syst. 14(3), 1063–1069 (1999)

    Article  Google Scholar 

  16. Jabr, R.A.: A conic quadratic format for the load flow equations of meshed networks. IEEE Trans. Power Syst. 22(4), 2285–2286 (2007)

    Article  Google Scholar 

  17. Baran, M.E., Wu, F.F.: Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Delivery 4(2), 1401–1407 (1989)

    Article  Google Scholar 

  18. Baran, M.E., Wu, F.F.: Optimal capacitor placement on radial distribution systems. IEEE Trans. Power Delivery 4(1), 725–734 (1989)

    Article  Google Scholar 

  19. Baran, M.E., Wu, F.F.: Optimal sizing of capacitors placed on a radial distribution system. IEEE Trans. Power Delivery 4(1), 735–743 (1989)

    Article  Google Scholar 

  20. Eminoglu, U., Hocaoglu, M.H.: Distribution systems forward/backward sweep-based power flow algorithms: a review and comparison study. Electr. Power Compon. Syst. 37(1), 91–110 (2008)

    Article  Google Scholar 

  21. Yeh, H.G., Gayme, D.F., Low, S.H.: Adaptive VAR control for distribution circuits with photovoltaic generators. IEEE Trans. Power Syst. 27(3), 1656–1663 (2012)

    Article  Google Scholar 

  22. Emiroglu, S., Ozdemir, G., Baran, M.E.: Assessment of linear distribution feeder models used in optimization methods. In: Proceedings of IEEE Innovative Smart Grid Technologies Conference (2016)

    Google Scholar 

  23. Wang, S., Chen, S., Ge, L., Wu, L.: Distributed generation hosting capacity evaluation for distribution systems considering the robust optimal operation of OLTC and SVC. IEEE Trans. Sustainable Energy 7(3), 1111–1123 (2016)

    Article  Google Scholar 

  24. Quintana-Quiros, P., Yeh, H.G.: Power flow optimization methods for distribution systems. In: Proceedings of IEEE Green Energy and Systems Conference, pp. 18–23 (2015)

    Google Scholar 

  25. Carpentier, J.: Contribution to the economic dispatch problem. Bulletin de la Societe Francoise des Electriciens 3(8), 431–447 (1962)

    Google Scholar 

  26. Capitanescu, F.: Critical review of recent advances and further developments needed in AC optimal power flow. Electr. Power Syst. Res. 136, 57–68 (2016)

    Article  Google Scholar 

  27. Wei, H., Sasaki, H., Kubokawa, J., Yokoyama, R.: An interior point nonlinear programming for optimal power flow problems with a novel data structure. IEEE Trans. Power Syst. 13(3), 870–877 (1998)

    Article  Google Scholar 

  28. Wu, Y.C., Debs, A.S., Marsten, R.E.: A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows. IEEE Trans. Power Syst. 9(2), 876–883 (1994)

    Article  Google Scholar 

  29. Jabr, R.A., Coonick, A.H., Cory, B.J.: A primal-dual interior point method for optimal power flow dispatching. IEEE Trans. Power Syst. 17(3), 654–662 (2002)

    Article  Google Scholar 

  30. Granelli, G.P., Montagna, M.: Security-constrained economic dispatch using dual quadratic programming. Electr. Power Syst. Res. 56(1), 71–80 (2000)

    Article  Google Scholar 

  31. Boggs, P.T., Tolle, J.W.: Sequential quadratic programming for large-scale nonlinear optimization. J. Comput. Appl. Math. 124(1-2), 123–137 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Boggs, P.T., Tolle, J.W.: Sequential quadratic programming. Acta Numer. 4, 1–51 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey, I: formulations and deterministic methods. Energy Syst. 3(3), 221–258 (2012)

    Google Scholar 

  34. Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey, II: nondeterministic and hybrid methods. Energy Syst. 3(3), 259–289 (2012)

    Google Scholar 

  35. Bai, X., Wei, H., Fujisawa, K., Wang, Y.: Semidefinite programming for optimal power flow problems. Int. J. Electr. Power 30(6-7), 383–392 (2008)

    Article  Google Scholar 

  36. Lavaei, J., Low, S.H.: Zero duality gap in optimal power flow problem. IEEE Trans. Power Syst. 27(1), 92–107 (2012)

    Article  Google Scholar 

  37. Farivar, M., Low, S.H.: Branch flow model: relaxations and convexification. IEEE Trans. Power Syst. 28(3), 2554–2572 (2013)

    Article  Google Scholar 

  38. Wei, W., Wang, J., Li, N., Mei, S.: Optimal power flow of radial networks and its variations: a sequential convex optimization approach. IEEE Trans. Smart Grid 8(6), 2974–2987 (2017)

    Article  Google Scholar 

  39. Wei, W., Wang, J., Wu, L.: Distribution optimal power flow with real-time price elasticity. IEEE Trans. Power Syst. 31(1), 1097–1098 (2018)

    Article  Google Scholar 

  40. Low, S.H.: Convex relaxation of optimal power flow part I: formulations and equivalence. IEEE Trans. Control Network Syst. 1(1), 15–27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Low, S.H.: Convex relaxation of optimal power flow part II: exactness. IEEE Trans. Control Netw. Syst. 1(2), 177–189 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, B., Tse, D.: Geometry of injection regions of power networks. IEEE Trans. Power Syst. 28(2), 788–797 (2013)

    Article  Google Scholar 

  43. Lavaei, J., Tse, D., Zhang, B.: Geometry of power flows and optimization in distribution networks. IEEE Trans. Power Syst. 29(2), 572–583 (2014)

    Article  Google Scholar 

  44. Sojoudi, S., Lavaei, J.: Exactness of semidefinite relaxations for nonlinear optimization problems with underlying graph structure. SIAM J. Optim. 24(4), 1746–1778 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Madani, R., Sojoudi, S., Lavaei, J.: Convex relaxation for optimal power flow problem: mesh networks. IEEE Trans. Power Syst. 30(1), 199–211 (2015)

    Article  Google Scholar 

  46. Madani, R., Ashraphijuo, M., Lavaei, J.: Promises of conic relaxation for contingency-constrained optimal power flow problem. IEEE Trans. Power Syst. 31(2), 1297–1307 (2016)

    Article  Google Scholar 

  47. Bose, S., Low, S.H., Teeraratkul, T., Hassibi, B.: Equivalent relaxations of optimal power flow. IEEE Trans. Autom. Control 60(3), 729–742 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Bose, S., Gayme, D.F., Chandy, K.M., Low, S.H.: Quadratically constrained quadratic programs on acyclic graphs with application to power flow. IEEE Trans. Control Netw. Syst. 2(3), 278–287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Molzahn, D.K., Hiskens, I.A.: Convex relaxations of optimal power flow problems: an illustrative example. IEEE Trans. Circuits Syst. Regul. Pap. 63(5), 650–660 (2016)

    Article  Google Scholar 

  50. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2009)

    MATH  Google Scholar 

  51. Josz, C., Maeght, J., Panciatici, P., Gilbert, J.C.: Application of the moment-SOS approach to global optimization of the OPF problem. IEEE Trans. Power Syst. 30(1), 463–470 (2015)

    Article  Google Scholar 

  52. Molzahn, D.K., Hiskens, I.A.: Sparsity-exploiting moment-based relaxations of the optimal power flow problem. IEEE Trans. Power Syst. 30(6), 3168–3180 (2015)

    Article  Google Scholar 

  53. Ghaddar, B., Marecek, J., Mevissen, M.: Optimal power flow as a polynomial optimization problem. IEEE Trans. Power Syst. 31(1), 539–546 (2016)

    Article  Google Scholar 

  54. Tian, J., Wei, H., Tan, J.: Global optimization for power dispatch problems based on theory of moments. Int. J. Electr. Power 71, 184–194 (2015)

    Article  Google Scholar 

  55. Chen, C., Atamtürk, A., Oren, S.S.: Bound tightening for the alternating current optimal power flow problem. IEEE Trans. Power Syst. 31(5), 3729–3736 (2016)

    Article  Google Scholar 

  56. Phan, D.T.: Lagrangian duality and branch-and-bound algorithms for optimal power flow. Oper. Res. 60(2), 275–285 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Li, N., Chen, L., Low, S.H.: Exact convex relaxation of OPF for radial networks using branch flow model. In: Proceedings of IEEE Third International Conference on Smart Grid Communications, Tainan, pp. 7–12 (2012)

    Google Scholar 

  58. Gan, L., Li, N., Topcu, U., Low, S.H.: Exact convex relaxation of optimal power flow in radial networks. IEEE Trans. Autom. Control 60(1), 72–87 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. Huang, S., Wu, Q., Wang, J., Zhao, H.: A sufficient condition on convex relaxation of AC optimal power flow in distribution networks. IEEE Trans. Power Syst. 32(2), 1359–1368 (2017)

    Google Scholar 

  60. Kocuk, B., Dey, S.S., Sun, X.A.: Inexactness of SDP relaxation and valid inequalities for optimal power flow. IEEE Trans. Power Syst. 31(1), 642–651 (2016)

    Article  Google Scholar 

  61. Kocuk, B., Dey, S.S., Sun, X.A.: Strong SOCP relaxations for the optimal power flow problem. Oper. Res. 64(6), 1177–1196 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  62. Lipp, T., Boyd, S.: Variations and extension of the convex-concave procedure. Optim. Eng. 17(2), 263–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  63. Han, S.P., Mangasarian, O.L.: Exact penalty functions in nonlinear programming. Math. Program. 17(1), 251–269 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  64. Pillo, G.D., Grippo, L.: Exact penalty functions in constrained optimization. SIAM J. Control Optim. 27(6), 1333–1360 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  65. Burer, S., Saxena, A.: The MILP Road to MIQCP. In: Lee J., Leyffer S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154. Springer, New York (2012)

    Google Scholar 

  66. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. Bukhsh, W.A., Grothey, A., McKinnon, K.I., Trodden, P.A.: Local solutions of the optimal power flow problem. IEEE Trans. Power Syst. 28(4), 4780–4788 (2013)

    Article  Google Scholar 

  68. Ajjarapu, V., Christy, C.: The continuation power flow: a tool for steady state voltage stability analysis. IEEE Trans. Power Syst. 7(1), 416–423 (1992)

    Article  Google Scholar 

  69. Chiang, H.D., Flueck, A.J., Shah, K.S., Balu, N.: CPFLOW: a practical tool for tracing power system steady-state stationary behavior due to load and generation variations. IEEE Trans. Power Syst. 10(2), 623–634 (1995)

    Article  Google Scholar 

  70. Li, S.H., Chiang, H.D.: Nonlinear predictors and hybrid corrector for fast continuation power flow. IET Gener. Transm. Distrib. 2(3), 341–354 (2008)

    Article  Google Scholar 

  71. Irisarri, G.D., Wang, X., Tong, J., Mokhtari, S.: Maximum loadability of power systems using interior point nonlinear optimization method. IEEE Trans. Power Syst. 12(1), 162–172 (1997)

    Article  Google Scholar 

  72. Avalos, R.J., Canizares, C.A., Milano, F., Conejo, A.J.: Equivalency of continuation and optimization methods to determine saddle-node and limit-induced bifurcations in power systems. IEEE Trans. Circuits-I 56(1), 210–223 (2009)

    Article  MathSciNet  Google Scholar 

  73. Molzahn, D., Lesieutre, B., DeMarco, C.: A sufficient condition for power flow insolvability with applications to voltage stability margins. IEEE Trans. Power Syst. 28(3), 2592–2601 (2013)

    Article  Google Scholar 

  74. Molzahn, D., Hiskens, I., Lesieutre, B.: Calculation of voltage stability margins and certification of power flow insolvability using second-order cone programming. In: Proceedings of 49th Hawaii International Conference on System Sciences, Kauai, Hawaii, pp. 2307–2316 (2016)

    Google Scholar 

  75. http://shgl.curent.utk.edu/toolsdemo

  76. https://sites.google.com/site/burakkocuk/research

  77. https://www.artelys.com/tools/knitro_doc/2_userGuide.html

  78. Tawarmalani, M. Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  79. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidisc. Optim. 26(6), 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  80. Caramia, M., Dell’Olmo, P.: Multi-objective optimization. In: Multi-Objective Management in Freight Logistics. Springer, Boston, ch. 2, pp. 11–36 (2008)

    Google Scholar 

  81. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  82. Zhou, A., Qu, B., Li, H., Zhao, S., Suganthan, P., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)

    Article  Google Scholar 

  83. Roman, C., Rosehart, W.: Evenly distributed Pareto points in multiobjective optimal power flow. IEEE Trans. Power Syst. 21(2), 1011–1012 (2006)

    Article  Google Scholar 

  84. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  85. Siano, P., Sarno, D.: Assessing the benefits of residential demand response in a real time distribution energy market. Appl. Energy 161, 533–551 (2016)

    Article  Google Scholar 

  86. Liu, Y., Li, J., Wu, L.: Distribution system restructuring: distribution LMP via unbalanced ACOPF. IEEE Trans. Smart Grid 9(5), 4038–4048 (2018)

    Article  Google Scholar 

  87. Papavasiliou, A.: Analysis of distribution locational marginal prices. IEEE Trans. Smart Grid 9(5), 4872–4882 (2018)

    Article  Google Scholar 

  88. Yuan, Z., Hesamzadeh, M.R., Biggar, D.: Distribution locational marginal pricing by convexified ACOPF and hierarchical dispatch. IEEE Trans. Smart Grid 9(4), 3133–3142 (2018)

    Article  Google Scholar 

  89. Alvarado, F.: The stability of power system markets. IEEE Trans. Power Syst. 14(2), 505–511 (1999)

    Article  Google Scholar 

  90. Alvarado, F., Meng, J., DeMarco, C.L., Mota, W.S.: Stability analysis of interconnected power systems coupled with market dynamics. IEEE Trans. Power Syst. 16(4), 695–701 (2001)

    Article  Google Scholar 

  91. Bejestani, A.K., Annaswamy, A.: A dynamic mechanism for wholesale energy market: stability and robustness. IEEE Trans. Smart Grid 5(6), 2877–2888 (2014)

    Article  Google Scholar 

  92. Roozbehani, M., Dahleh, M., Mitter, S.K.: Volatility of power grid under real-time pricing. IEEE Trans. Power Syst. 27(4), 1926–1940 (2012)

    Article  Google Scholar 

  93. Zhao, Z., Wu, L., Song, G.: Convergence of volatile power markets with price-based demand response. IEEE Trans. Power Syst. 29(5), 2107–2118 (2014)

    Article  Google Scholar 

  94. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)

    Book  MATH  Google Scholar 

  95. Conejo, A.J., Castillo, E., Mínguez, R., Milano, F.: Locational marginal price sensitivities. IEEE Trans. Power Syst. 20(4), 2026–2033 (2005)

    Article  Google Scholar 

  96. Carta, J.A., Ramirez, P., Velazquez, S.: A review of wind speed probability distributions used in wind energy analysis: case studies in the Canary Islands. Renew. Sust. Energy Rev. 13(5), 933–955 (2009)

    Article  Google Scholar 

  97. Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  98. Bertsimas, D., Doan, X., Natarajan, K., Teo, C.: Models for minimax stochastic linear optimization problems with risk aversion. Math. Oper. Res. 35(3), 580–602 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  99. Wei, W., Liu, F., Mei, S., Hou, Y.: Robust energy and reserve dispatch under variable renewable generation. IEEE Trans. Smart Grid 6(1), 369–380 (2015)

    Article  Google Scholar 

  100. Wei, W., Liu, F., Mei, S.: Distributionally robust co-optimization of energy and reserve dispatch. IEEE Trans. Sustainable Energy 7(1), 289–300 (2016)

    Article  Google Scholar 

  101. Wu, L.: A tighter piecewise linear approximation of quadratic cost curves for unit commitment problems. IEEE Trans. Power Syst. 26(4), 2581–2583 (2011)

    Article  Google Scholar 

  102. http://motor.ece.iit.edu/data/JEAS_IEEE118.doc

  103. https://docs.mosek.com/modeling-cookbook/index.html

  104. https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer

  105. Guan, Y., Wang, J.: Uncertainty sets for robust unit commitment. IEEE Trans. Power Syst. 29(3), 1439–1440 (2014)

    Article  MathSciNet  Google Scholar 

  106. Foley, A.M., Leahy, P.G., Marvuglia, A., McKeogh, E.J.: Current methods and advances in forecasting of wind power generation. Renew. Energy 37(1), 1–8 (2012)

    Article  Google Scholar 

  107. Wei, W., Liu, F., Mei, S.: Dispatchable region of the variable wind generation. IEEE Trans. Power Syst. 30(5), 2755–2765 (2015)

    Article  Google Scholar 

  108. Wei, W., Liu, F., Mei, S.: Real-time dispatchability of bulk power systems with volatile renewable generations. IEEE Trans. Sustain. Energy 6(3), 738–747 (2015)

    Article  Google Scholar 

  109. Wei, W., Li, N., Wang, J., Mei, S.: Estimating the probability of infeasible real-time dispatch without exact distributions of stochastic wind generations. IEEE Trans. Power Syst. 31(6), 5022–5032 (2016)

    Article  Google Scholar 

  110. Wei, W., Wang, J., Mei, S.: Dispatchability maximization for cooptimized energy and reserve dispatch with explicit reliability guarantee. IEEE Trans. Power Syst. 31(4), 3276–3288 (2016)

    Article  Google Scholar 

  111. Huynh, T., Lassez, C., Lassez, J.: Practical issues on the projection of polyhedral sets. Ann. Math. Artif. Intell. 6(4), 295–315 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  112. Herceg, M., Kvasnica, M., Jones, C.N., Morari, M.: Multi-Parametric Toolbox 3.0. In: Proceedings of the European Control Conference, Zurich, Switzerland, pp. 502–510 (2013)

    Google Scholar 

  113. Ardakani, A., Bouffard, F.: Identification of umbrella constraints in DC-based security-constrained optimal power flow. IEEE Trans. Power Syst. 28(4), 3924–3934 (2013)

    Article  Google Scholar 

  114. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V.: Generating all vertices of a polyhedron is hard. Discr. Comput. Geom. 39(1), 174–190 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  115. Wan, C., Lin, J., Guo, W., Song, Y.: Maximum uncertainty boundary of volatile distributed generation in active distribution network. IEEE Trans. Smart Grid 9(4), 2930–2942 (2018)

    Article  Google Scholar 

  116. Dvijotham, K., Turitsyn, K., Construction of power flow feasibility sets. Tech. Rep. arXiv:1506.07191 (2015)

    Google Scholar 

  117. Nguyen, H., Dvijotham, K., Turitsyn, K.: Construction of convex inner approximations of optimal power flow feasibility sets. Tech. Rep. arXiv:1708.06845 (2017)

    Google Scholar 

  118. Vandenberghe, L., Boyd, S., Comanor, K.: Generalized Chebyshev bounds via semidefinite programming. SIAM Rev. 49(1), 52–64 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  119. Bertsimas, D., Popescu, I.: Optimal inequalities in probability theory: a convex optimization approach. SIAM J. Optim. 15(3), 780–804 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  120. Parys, B.V., Goulart, P.J., Kuhn, D.: Generalized Gauss inequalities via semidefinite programming. Math. Program. 156(1), 271–302 (2016)

    MathSciNet  MATH  Google Scholar 

  121. Löfberg, J.: Pre- and post-processing sum-of-squares programs in practice. IEEE Trans. Autom. Control 54(5), 1007–1011 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  122. Constantinescu, E.M., Zavala, V.M., Rocklin, M., Lee, S., Anitescu, M.: A computational framework for uncertainty quantification and stochastic optimization in unit commitment with wind power generation. IEEE Trans. Power Syst. 26(1), 431–441 (2011)

    Article  Google Scholar 

  123. Petra, C.G., Zavala, V.M., Nino-Ruiz, E.D., Anitescu, M.: Economic impacts of wind covariance estimation on power grid operations. Tech. Rep. Argonne National Laboratory, Argonne, IL, ANL/MCS-P5148-0614 (2014)

    Google Scholar 

  124. Ma, X., Sun, Y., Fang, H.: Scenario generation of wind power based on statistical uncertainty and variability. IEEE Trans. Sustain. Energy 4(4), 894–904 (2013)

    Article  Google Scholar 

  125. Usaola, J.: Probabilistic load flow in systems with wind generation. IET Gener. Transm. Distrib. 3(12), 1031–1041 (2009)

    Article  Google Scholar 

  126. Jaleeli, N., VanSlyck, L.S., Ewart, D.N., Fink, L.H., Hoffmann, A.G.: Understanding automatic generation control. IEEE Trans. Power Syst. 7(3), 1106–1122 (1992)

    Article  Google Scholar 

  127. Jabr, R.A.: Adjustable robust OPF with renewable energy sources. IEEE Trans. Power Syst. 28(4), 4742–4751 (2013)

    Article  Google Scholar 

  128. Warrington, J., Goulart, P., Mariethoz, S., Morari, M.: Policy-based reserves for power systems. IEEE Trans. Power Syst. 28(4), 4427–4437 (2013)

    Article  Google Scholar 

  129. Bertsimas, D., Iancu, D.A., Parrilo, P.A.: Optimality of affine policies in multistage robust optimization. Math. Oper. Res. 35(2), 363–394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  130. Iancu, D.A., Sharma, M., Sviridenko, M.: Supermodularity and affine policies in dynamic robust optimization. Oper. Res. 61(4), 941–956 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  131. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. Math. Program. 99(2), 351–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  132. Jiang, R., Wang, J., Guan, Y.: Robust unit commitment with wind power and pumped storage hydro. IEEE Trans. Power Syst. 27(2), 800–810 (2012)

    Article  Google Scholar 

  133. Bertsimas, D., Litvinov, E., Sun, X.A., Zhao, J., Zheng, T.: Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans. Power Syst. 28(1), 52–63 (2013)

    Article  Google Scholar 

  134. Zhao, L., Zeng, B.: Robust unit commitment problem with demand response and wind energy. In: Proceeedings of IEEE Power and Energy Society General Meeting, San Diego, USA (2012)

    Google Scholar 

  135. Wei, W., Liu, F., Mei, S., En, L.: Two-level unit commitment and reserve level adjustment considering large-scale wind power integration. Int. Trans. Electr. Energy Syst. 24(12), 1726–1746 (2014)

    Article  Google Scholar 

  136. Morales-España, G., Latorre, J.M., Ramos, A.: Tight and compact MILP formulation of start-up and shut-down ramping in unit commitment. IEEE Trans. Power Syst. 28(2), 1288–1296 (2013)

    Article  Google Scholar 

  137. Tahanan, M., Van Ackooij, W., Frangioni, A., Lacalandra, F.: Large-scale unit commitment under uncertainty. 4OR 13(2), 115–171 (2015)

    Google Scholar 

  138. Li, Z., Guo, Q., Sun, H., Wang, J.: Sufficient conditions for exact relaxation of complementarity constraints for storage-concerned economic dispatch. IEEE Trans. Power Syst. 31(2), 1653–1654 (2016)

    Article  Google Scholar 

  139. Li, Z., Guo, Q., Sun, H., Wang, J.: Storage-like devices in load leveling: complementarity constraints and a new and exact relaxation method. Appl. Energy 151, 13–22 (2015)

    Article  Google Scholar 

  140. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons. Math. Program. 129(1), 129–157 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  141. Luo, Z.Q., Ma, W.K., So, A.M.C., Ye, Y., Zhang, S.: Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag. 27(3), 20–34 (2010)

    Article  Google Scholar 

  142. Zhang, Y., Madani, R., Lavaei, J.: Conic relaxations for power system state estimation with line measurements. IEEE Trans. Control Network Syst. 5(3), 1193–1205 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  143. Kocuk, B., Dey, S.S., Sun, X.: New formulation and strong MISOCP relaxations for AC optimal transmission switching problem. IEEE Trans. Power Syst. 32(6), 4161–4170 (2017)

    Article  Google Scholar 

  144. Fattahi, S., Lavaei, J., Atamturk, A.: Promises of conic relaxations in optimal transmission switching of power systems. In: IEEE 56th Annual Conference on Decision and Control, pp. 3238–3245 (2017)

    Google Scholar 

  145. Hijazi, H., Coffrin, C., Van Hentenryck, P.: Convex quadratic relaxations for mixed-integer nonlinear programs in power systems. Math. Program. Comput. 9(3), 321–367 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  146. Li, Q., Ayyanar, R., Vittal, V.: Convex optimization for DES planning and operation in radial distribution systems with high penetration of photovoltaic resources. IEEE Trans. Sustainable Energy 7(3), 985–995 (2016)

    Article  Google Scholar 

  147. Taylor, J.A., Hover, F.S.: Conic AC transmission system planning. IEEE Trans. Power Syst. 28(2), 952–959 (2013)

    Article  Google Scholar 

  148. Bai, Y., Zhong, H., Xia, Q., Kang, C., Xie. L.: A decomposition method for network-constrained unit commitment with AC power flow constraints. Energy 88, 595–603 (2015)

    Article  Google Scholar 

  149. Fattahi, S., Ashraphijuo, M., Lavaei, J.,Atamturk, A.: Conic relaxations of the unit commitment problem. Energy 134, 1079–1095 (2017)

    Article  Google Scholar 

  150. Liu, J., Castillo, A., Watson, J.P., Laird, C.: Global solution strategies for the network-constrained unit commitment (NCUC) problem with nonlinear AC transmission models. arXiv:1801.07218 (2018)

    Google Scholar 

  151. Ghamkhari, M., Sadeghi-Mobarakeh, A., Mohsenian-Rad, H.: Strategic bidding for producers in nodal electricity markets: a convex relaxation approach. IEEE Trans. Power Syst. 32(3), 2324–2336 (2017)

    Article  Google Scholar 

  152. Sojoudi, S., Fattahi, S., Lavaei, J.: Convexification of generalized network flow problem. Math. Program. 173, 353–391 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  153. Baringo, L., Conejo, A.J.: Offering strategy via robust optimization. IEEE Trans. Power Syst. 26(3), 1418–1425 (2011)

    Article  Google Scholar 

  154. Hajimiragha, A.H., Canizares, C.A., Fowler, M.W., Moazeni, S., Elkamel, A.: A robust optimization approach for planning the transition to plug-in hybrid electric vehicles. IEEE Trans. Power Syst. 26(4), 2264–2274 (2011)

    Article  Google Scholar 

  155. Chen, Z., Wu, L., Fu, Y.: Real-time price-based demand response management for residential appliances via stochastic optimization and robust optimization. IEEE Trans. Smart Grid 3(4), 1822–1831 (2012)

    Article  Google Scholar 

  156. An, Y., Zeng, B.: Exploring the modeling capacity of two-stage robust optimization: variants of robust unit commitment model. IEEE Trans. Power Syst. 30(1), 109–122 (2015)

    Article  Google Scholar 

  157. Hu, B., Wu, L., Marwali, M.: On the robust solution to SCUC with load and wind uncertainty correlations. IEEE Trans. Power Syst. 29(6), 2952–2964 (2014)

    Article  Google Scholar 

  158. Lorca, A., Sun, X.A.: Multistage robust unit commitment with dynamic uncertainty sets and energy storage. IEEE Trans. Power Syst. 32(3), 1678–1688 (2017)

    Article  Google Scholar 

  159. Zhao, C., Wang, J., Watson, J.P., Guan, Y.: Multi-stage robust unit commitment considering wind and demand response uncertainties. IEEE Trans. Power Syst. 28(3), 2708–2717 (2013)

    Article  Google Scholar 

  160. Lorca, A., Sun, X.A., Litvinov, E., Zheng, T.: Multistage adaptive robust optimization for the unit commitment problem. Oper. Res. 64(1), 32–51 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  161. Warrington, J., Hohl, C., Goulart, P.J., Morari, M.: Rolling unit commitment and dispatch with multi-stage recourse policies for heterogeneous devices. IEEE Trans. Power Syst. 31(1), 187–197 (2016)

    Article  Google Scholar 

  162. Jiang, R., Wang, J., Zhang, M., Guan, Y.: Two-stage minimax regret robust unit commitment. IEEE Trans. Power Syst. 28(3), 2271–2282 (2013)

    Article  Google Scholar 

  163. Zhao, C., Guan, Y.: Unified stochastic and robust unit commitment. IEEE Trans. Power Syst. 28(3), 3353–3361 (2013)

    Article  Google Scholar 

  164. Wang, Q., Watson, J.P., Guan, Y.: Two-stage robust optimization for N-k contingency-constrained unit commitment. IEEE Trans. Power Syst. 28(3), 2366–2375 (2013)

    Article  Google Scholar 

  165. Hu, B., Wu, L.: Robust SCUC considering continuous/discrete uncertainties and quick-start units: a two-stage robust optimization with mixed-integer recourse. IEEE Trans. Power Syst. 31(2), 1407–1419 (2016)

    Article  MathSciNet  Google Scholar 

  166. Dehghan, S., Amjady, N., Kazemi, A.: Two-stage robust generation expansion planning: a mixed integer linear programming model. IEEE Trans. Power Syst. 29(2), 584–597 (2014)

    Article  Google Scholar 

  167. Chen, B., Wang, J., Wang, L., He, Y., Wang, Z.: Robust optimization for transmission expansion planning: minimax cost vs. minimax regret. IEEE Trans. Power Syst. 29(6), 3069–3077 (2014)

    Google Scholar 

  168. Moreira, A., Street, A., Arroyo, J.M.: An adjustable robust optimization approach for contingency-constrained transmission expansion planning. IEEE Trans. Power Syst. 30(4), 2013–2022 (2015)

    Article  Google Scholar 

  169. Jabr, R.A.: Robust transmission network expansion planning with uncertain renewable generation and loads. IEEE Trans. Power Syst. 28(4), 4558–4567 (2013)

    Article  Google Scholar 

  170. Jabr, R.A., Dzafic, I., Pal, B.C.: Robust optimization of storage investment on transmission networks. IEEE Trans. Power Syst. 30(1), 531–539 (2015)

    Article  Google Scholar 

  171. Yuan, W., Wang, J., Qiu, F., Chen, C., Kang, C., Zeng, B.: Robust optimization-based resilient distribution network planning against natural disasters. IEEE Trans. Smart Grid 7(6), 2817–2826 (2016)

    Article  Google Scholar 

  172. Ding, T., Liu, S., Yuan, W., Bie, Z., Zeng, B.: A two-stage robust reactive power optimization considering uncertain wind power integration in active distribution networks. IEEE Trans. Sustainable Energy 7(1), 301–311 (2016)

    Article  Google Scholar 

  173. Ding, T., Li, C., Yang, Y., Jiang, J., Bie, Z., Blaabjerg, F.: A two-stage robust optimization for centralized-optimal dispatch of photovoltaic inverters in active distribution networks. IEEE Trans. Sustainable Energy 8(2), 744–754 (2017)

    Article  Google Scholar 

  174. Gao, H., Liu, J., Wang, L.: Robust coordinated optimization of active and reactive power in active distribution systems. IEEE Trans. Smart Grid 9(5), 4436–4447 (2018)

    Article  Google Scholar 

  175. Li, Z., Wu, W., Zhang, B., Wang, B.: Adjustable robust real-time power dispatch with large-scale wind power integration. IEEE Trans. Sustainable Energy 6(2), 357–368 (2015)

    Article  Google Scholar 

  176. Lorca, A., Sun, X.A.: Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind. IEEE Trans. Power Syst. 30(4), 1702–1713 (2015)

    Article  Google Scholar 

  177. Zugno, M., Conejo, A.J.: A robust optimization approach to energy and reserve dispatch in electricity markets. Eur. J. Oper. Res. 247(2), 659–671 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  178. Jabr, R.A.: Adjustable robust OPF with renewable energy sources. IEEE Trans. Power Syst. 28(4), 4742–4751 (2013)

    Article  Google Scholar 

  179. Jabr, R.A., Karaki, S., Korbane, J.A.: Robust multi-period OPF with storage and renewables. IEEE Trans. Power Syst. 30(5), 2790–2799 (2015)

    Article  Google Scholar 

  180. Li, Z., Wu, W., Zeng, B., Shahidehpour, M., Zhang, B.: Decentralized contingency-constrained tie-line scheduling for multi-area power grids. IEEE Trans. Power Syst. 32(1), 354–367 (2017)

    Article  Google Scholar 

  181. Li, Z., Shahidehpour, M., Wu, W., Zeng, B., Zhang, B., Zheng, W.: Decentralized multiarea robust generation unit and tie-line scheduling under wind power uncertainty. IEEE Trans. Sustainable Energy 6(4), 1377–1388 (2015)

    Article  Google Scholar 

  182. Chen, X., Wu, W., Zhang, B.: Robust restoration method for active distribution networks. IEEE Trans. Power Syst. 31(5), 4005–4015 (2016)

    Article  Google Scholar 

  183. Liu, C., Lee, C., Chen, H., Mehrotra, S.: Stochastic robust mathematical programming model for power system optimization. IEEE Trans. Power Syst. 31(1), 821–822 (2016)

    Article  Google Scholar 

  184. Xiong, P., Jirutitijaroen, P., Singh, C.: A distributionally robust optimization model for unit commitment considering uncertain wind power generation. IEEE Trans. Power Syst. 32(1), 39–49 (2017)

    Article  Google Scholar 

  185. Zhao, C., Guan, Y.: Data-driven stochastic unit commitment for integrating wind generation. IEEE Trans. Power Syst. 31(4), 2587–2596 (2016)

    Article  Google Scholar 

  186. Gourtani, A., Xu, H., Pozo, D., Nguyen, T.: Robust unit commitment with n-1 criteria. Math Method. Oper. Res. 83(3), 373–408 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  187. Duan, C., Jiang, L., Fang, W., Liu, J.: Data-driven affinely adjustable distributionally robust unit commitment. IEEE Trans. Power Syst. 33(2), 1385–1398 (2018)

    Article  Google Scholar 

  188. Summers, T., Warrington, J., Morari, M., Lygerosa, J.: Stochastic optimal power flow based on conditional value at risk and distributional robustness. Int. J. Electr. Power 72, 116–125 (2015)

    Article  Google Scholar 

  189. Zhang, Y., Shen, S., Mathieu, J.L.: Distributionally robust chance-constrained optimal power flow with uncertain renewables and uncertain reserves provided by loads. IEEE Trans. Power Syst. 32(2), 1378–1388 (2017)

    Google Scholar 

  190. Lubin, M., Dvorkin, Y., Backhaus, S.: A robust approach to chance constrained optimal power flow with renewable generation. IEEE Trans. Power Syst. 31(5), 3840–3849 (2016)

    Article  Google Scholar 

  191. Li, B., Jiang, R., Mathieu, J.L.: Distributionally robust risk-constrained optimal power flow using moment and unimodality information. In: Proceedings of IEEE 55th Conference on Decision and Control, pp. 2425–2430 (2016)

    Google Scholar 

  192. Xie, W., Ahmed, S.: Distributionally robust chance constrained optimal power flow with renewables: a conic reformulation. IEEE Trans. Power Syst. 33(2), 1860–1867 (2018)

    Article  Google Scholar 

  193. Guo, Y., Baker, K., Dall’Anese, E., Hu, Z., Summerset, T.: Stochastic optimal power flow based on data-driven distributionally robust optimization. In: IEEE Annual American Control Conference, pp. 3840–3846 (2018)

    Google Scholar 

  194. Mieth, R., Dvorkin, Y.: Data-driven distributionally robust optimal power flow for distribution systems. IEEE Contr. Syst. Lett. 2(3), 363–368 (2018)

    Article  Google Scholar 

  195. Duan, C., Fang, W., Jiang, L., Yao, L., Liu, J.: Distributionally robust chance-constrained approximate AC-OPF with Wasserstein metric. IEEE Trans. Power Syst. 33(5), 4924–4936 (2018)

    Article  Google Scholar 

  196. Bian, Q., Xin, H., Wang, Z., Gan, D., Wong, K.P.: Distributionally robust solution to the reserve scheduling problem with partial information of wind power. IEEE Trans. Power Syst. 30(5), 2822–2823 (2015)

    Article  Google Scholar 

  197. Wang, Z., Bian, Q., Xin, H., et al.: A distributionally robust co-ordinated reserve scheduling model considering CVaR-based wind power reserve requirements. IEEE Trans. Sustainable Energy 7(2), 625–636 (2016)

    Article  Google Scholar 

  198. Tong, X., Luo, X., Yang, H., Zhang, L.: A distributionally robust optimization based risk limiting dispatch in power system under moment uncertainty. Int. Trans. Electr. Energy Syst. 27(8), e2343 (2017)

    Article  Google Scholar 

  199. Ding, T., Yang, Q., Yang, Y., Li, C., Bie, Z., Blaabjerg, F.: A data-driven stochastic reactive power optimization considering uncertainties in active distribution networks and decomposition method. IEEE Trans. Smart Grid 9(5), 4994–5004 (2018)

    Article  Google Scholar 

  200. Chen, X., Wu, W., Zhang, B., Lin, C.: Data-driven DG capacity assessment method for active distribution networks. IEEE Trans. Power Syst. 32(5), 3946–3957 (2017)

    Article  Google Scholar 

  201. Darivianakis, G., Eichler, A., Smith, R.S., Lygeros, J.: A data-driven stochastic optimization approach to the seasonal storage energy management. IEEE Control Syst. Lett. 1(2), 394–399 (2017)

    Article  Google Scholar 

  202. Bagheri, A., Wang, J., Zhao, C.: Data-driven stochastic transmission expansion planning. IEEE Trans. Power Syst. 32(5), 3461–3470 (2017)

    Article  Google Scholar 

  203. Pan, K., Guan, Y.: Data-driven risk-averse stochastic self-scheduling for combined-cycle units. IEEE Trans. Ind. Inf. 13(6), 3058–3069 (2017)

    Article  Google Scholar 

  204. Zhang, X., Kamgarpour, M., Georghiou, A., Goulart, P., Lygerosa, J.: Robust optimal control with adjustable uncertainty sets. Automatica 75, 249–259 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  205. Zhao, J., Zheng, T., Litvinov, E.: Variable resource dispatch through do-not-exceed limit. IEEE Trans. Power Syst. 30(2), 820–828 (2015)

    Article  Google Scholar 

  206. Zhao, J., Zheng, T., Litvinov, E.: A unified framework for defining and measuring flexibility in power system. IEEE Trans. Power Syst. 31(1), 339–347 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wei, W., Wang, J. (2020). Electric Power System with Renewable Generation. In: Modeling and Optimization of Interdependent Energy Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-030-25958-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25958-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25957-0

  • Online ISBN: 978-3-030-25958-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics