Advertisement

Encoding Time Reduction for 3D-HEVC Intra-Frame Prediction of Depth Maps

  • Gustavo Sanchez
  • Luciano Agostini
  • César Marcon
Chapter
  • 123 Downloads

Abstract

The intra-frame prediction of the Three-Dimensional High Efficiency Video Coding (3D-HEVC) depth maps encompasses several new encoding tools that were not used by texture coding. Besides, it inherits the texture encoding tools without considering depth map characteristics that could be used for simplifying those algorithms. Therefore, this chapter presents an in-depth analysis of the encoder processing effort and the usage of the encoding tools, and, based on them, four new timesaving encoding algorithms are presented.

The new algorithms include two solutions for accelerating the Intra_Wedge, one solution for accelerating the Transform-Quantization (TQ) and Direct Component-only (DC-only) encoding flows, and one solution for pruning the quadtree without requiring an extensive evaluation. The experimental results are presented, being capable of providing several levels of timesaving with different levels of impact in the encoding efficiency. The solutions described in this chapter provide sound results when compared to the related works presented in Sect.  3.1. The experimental results regarding all algorithms are also presented in this chapter, and these results are compared with related works shown in Sect.  3.2. The algorithms introduced in this chapter surpass other related works, showing better results regarding encoding efficiency and timesaving.

Keywords

3D-HEVC Depth maps coding Intra-frame prediction Encoding time reduction Statistical analysis DMM-1 HEVC Intra-frame prediction Machine learning Intra_Wedge Performance-aware algorithms 

References

  1. 1.
    Sanchez, G., R. Cataldo, R. Fernandes, L. Agostini, and C. Marcon. 2016. 3D-HEVC depth maps intra prediction complexity analysis. IEEE International Conference on Electronics, Circuits and Systems: 348–351.Google Scholar
  2. 2.
    Sanchez, G., J. Silveira, L. Agostini, and C. Marcon. 2018. Performance analysis of depth intra coding in 3D-HEVC. IEEE Transactions on Circuits and Systems for Video Technology 1–1: 1–12.Google Scholar
  3. 3.
    Gu, Z., J. Zheng, N. Ling, and P. Zhang. 2013. Fast intra prediction mode selection for intra depth map coding, Technical Report, ISO/IEC JTC1/SC29/WG11, 4.Google Scholar
  4. 4.
    ———. 2015. Fast segment-wise DC coding for 3D video compression. IEEE International Symposium on Circuits and Systems: 2780–2783.Google Scholar
  5. 5.
    Sanchez, G., L. Jordani, C. Marcon, and L. Agostini. 2016. DFPS: A fast pattern selector for depth modeling mode 1 in three-dimensional high-efficiency video coding standard. Journal of Electronic Imaging 25 (6): 063011.CrossRefGoogle Scholar
  6. 6.
    Sanchez, G., L. Agostini, and C. Marcon. 2018. A reduced computational effort modelevel scheme for 3D-HEVC depth maps intra-frame prediction. Journal of Visual Communication and Image Representation 54 (1): 193–203.CrossRefGoogle Scholar
  7. 7.
    ———. 2017. Complexity reduction by modes reduction in RD-list for intra-frame prediction in 3D-HEVC depth maps. IEEE International Symposium on Circuits and Systems: 1–4.Google Scholar
  8. 8.
    Saldanha, M., G. Sanchez, C. Marcon, and L. Agostini. 2018. Fast 3D-Hevc depth maps intraframe prediction using data mining. IEEE International Conference on Acoustics, Speech and Signal Processing: 1738–1742.Google Scholar
  9. 9.
    Sanchez, G., M. Saldanha, G. Balota, B. Zatt, M. Porto, and L. Agostini. 2014. A complexity reduction algorithm for depth maps intra prediction on the 3D-HEVC. IEEE Visual Communications and Image Processing Conference: 137–140.Google Scholar
  10. 10.
    Saldanha, M, B. Zatt, M. Porto, L. Agostini, G. Sanchez. 2016. Solutions for DMM-1 complexity reduction in 3D-HEVC based on gradient calculation. In: IEEE 7th Latin American Symposium on Circuits & Systems, 211–214.Google Scholar
  11. 11.
    Hall, M., E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. 2009. The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter 11 (1): 10–18.CrossRefGoogle Scholar
  12. 12.
    Quinlan, J.R. 2014. C4. 5: programs for machine learning, 302. Elsevier.Google Scholar
  13. 13.
    Brunk, C.A., and M.J. Pazzani. 1991. An investigation of noise-tolerant relational concept learning algorithms. Machine Learning Proceedings: 389–393.Google Scholar
  14. 14.
    Conceição, R., G. Avila, G. Corrêa, M. Porto, B. Zatt, and L. Agostini. 2016. Complexity reduction for 3D-HEVC depth map coding based on early skip and early DIS scheme. IEEE International Conference on Image Processing: 1116–1120.Google Scholar
  15. 15.
    Fu, C.-H., H.-B. Zhang, W.-M. Su, S.-H. Tsang, and Y.-L. Chan. 2015. Fast wedgelet pattern decision for DMM in 3D-HEVC. IEEE International Conference on Digital Signal Processing: 477–481.Google Scholar
  16. 16.
    Peng, K.-K., J.-C. Chiang, and W.-N. Lie. 2016. Low complexity depth intra coding combining fast intra mode and fast CU size decision in 3D-HEVC. IEEE International Conference on Image Processing: 1126–1130.Google Scholar
  17. 17.
    Zhang, H.-B., Y.-L. Chan, C.-H. Fu, S.-H. Tsang, and W.-C. Siu. 2016. Quadtree decision for depth intra coding in 3D-HEVC by good feature. IEEE International Conference on Acoustics, Speech and Signal Processing: 1481–1485.Google Scholar
  18. 18.
    Zhang, H.-B., C.-H. Fu, Y.-L. Chan, S.-H. Tsang, and W.-C. Siu. 2015. Efficient depth intra mode decision by reference pixels classification in 3D-HEVC. IEEE International Conference on Image Processing: 961–965.Google Scholar
  19. 19.
    Zhang, H.-B., S.-H. Tsang, Y.-L. Chan, C.-H. Fu, and W.-M. Su. 2015. Early determination of intra mode and segment-wise DC coding for depth map based on hierarchical coding structure in 3D-HEVC. Asia-Pacific Signal and Information Processing Association Annual Summit and Conference: 374–378.Google Scholar
  20. 20.
    Chen, H., C.-H. Fu, Y.-L. Chan, and X. Zhu. 2018. Early intra block partition decision for depth maps in 3D-HEVC. IEEE International Conference on Image Processing: 1777–1781.Google Scholar
  21. 21.
    Sanchez, G., M. Saldanha, G. Balota, B. Zatt, M. Porto, and L. Agostini. 2014. Complexity reduction for 3D-HEVC depth maps intra-frame prediction using simplified edge detector algorithm. IEEE International Conference on Image Processing: 3209–3213.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gustavo Sanchez
    • 1
  • Luciano Agostini
    • 2
  • César Marcon
    • 3
  1. 1.Centro de InformáticaInstituto Federal Farroupilha (IFFAR)AlegreteBrazil
  2. 2.Video Technology Research Group (ViTech)Federal University of Pelotas (UFPel)PelotasBrazil
  3. 3.Polytechnic SchoolPontifical Catholic University of Rio Grande do Sul (PUCRS)Porto Alegre Brazil

Personalised recommendations