• Gustavo Sanchez
  • Luciano Agostini
  • César Marcon


A notable effort was spent on extending the High Efficiency Video Coding (HEVC) for encoding Three-Dimensional (3D) video applications; this effort generated the 3D-HEVC standard. 3D-HEVC was defined using the Multiview Video plus Depth (MVD) data format, which is an innovative approach compared with the previous state-of-the-art 3D or Multiview coding standards. MVD includes a depth map associated with each texture view, requiring an extra effort in its encoding. Besides, due to differences between the texture and depth map characteristics, additional algorithms were inserted into 3D-HEVC for providing a better encoding quality in depth map coding, implying an increase in the encoding effort.

This chapter presents an overview of 3D-HEVC using depth map coding. Afterward, the contributions provided by this book are described, pointing to the respective chapters were these contributions are found. Finally, the outline of the book is presented.


3D-HEVC Depth maps coding 3D video coding MVD Encoding effort reduction Intra-frame prediction Inter-frame prediction Fast coding algorithms Performance-aware algorithms Energy-efficient algorithms 


  1. 1.
    Sullivan, G.J., J.-R. Ohm, W.-J. Han, T. Wiegand, et al. 2012. Overview of the high efficiency video coding (HEVC) standard. In IEEE transactions on circuits and systems for video technology, vol. 22–12, 1649–1668.Google Scholar
  2. 2.
    He, Z., L. Yu, X. Zheng, S. Ma, and Y. He. 2013. Framework of AVS2-video coding. In IEEE International Conference on Image Processing, 1515–1519.Google Scholar
  3. 3.
    Mukherjee, D., J. Bankoski, A. Grange, J. Han, J. Koleszar, P. Wilkins, Y. Xu, and R. Bultje. 2013. The latest open-source video codec VP9-an overview and preliminary results. In Picture coding symposium, 390–393.Google Scholar
  4. 4.
    Xu, J., R. Joshi, and R.A. Cohen. 2016. Overview of the emerging HEVC screen content coding extension. IEEE Transactions on Circuits and Systems for Video Technology 26 (1): 50–62.CrossRefGoogle Scholar
  5. 5.
    Müller, K., H. Schwarz, D. Marpe, C. Bartnik, S. Bosse, H. Brust, T. Hinz, H. Lakshman, P. Merkle, F.H. Rhee, et al. 2013. 3D high-efficiency video coding for multi-view video and depth data. IEEE Transactions on Image Processing 22 (9): 3366–3378.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Tech, G., Y. Chen, K. Müller, J.-R. Ohm, A. Vetro, and Y.-K. Wang. 2016. Overview of the multiview and 3D extensions of high efficiency video coding. IEEE Transactions on Circuits and Systems for Video Technology 26 (1): 35–49.CrossRefGoogle Scholar
  7. 7.
    Kauff, P., N. Atzpadin, C. Fehn, M. Müller, O. Schreer, A. Smolic, and R. Tanger. 2007. Depth map creation and image-based rendering for advanced 3DTV services providing interoperability and scalability. Signal Processing: Image Communication 22 (2): 217–234.Google Scholar
  8. 8.
    Zhao, Y., C. Zhu, Z. Chen, D. Tian, and L. Yu. 2011. Boundary artifact reduction in view synthesis of 3D video: From perspective of texture-depth alignment. IEEE Transactions on Broadcasting 57 (2): 510–522.CrossRefGoogle Scholar
  9. 9.
    Tang, X.-l., S.-K. Dai, and C.-H. Cai. 2010. An analysis of TZ Search algorithm in JMVC. In International Conference on Green Circuits and Systems, 516–520.Google Scholar
  10. 10.
    Fehn, C. 2004. Depth-image-based rendering (DIBR), compression, and transmission for a new approach on 3D-TV. In Stereoscopic displays and virtual reality systems XI, 93–105.CrossRefGoogle Scholar
  11. 11.
    Chen, Y., G. Tech, K. Wegner, and S. Yea. 2015. Test model 11 of 3D-HEVC and MV-HEVC, Technical Report, ISO/IEC JTC1/SC29/WG11, 58p.Google Scholar
  12. 12.
    Smolic, A., K. Muller, K. Dix, P. Merkle, P. Kauff, and T. Wiegand. 2008. Intermediate view interpolation based on multiview video plus depth for advanced 3D video systems. In IEEE International Conference on Image Processing, 2448–2451.Google Scholar
  13. 13.
    Lee, J., M. Park, and C. Kim 2015. 3d-ce1: depth intra skip (dis) mode, Technical Report, ISO/IEC JTC1/SC29/WG11, 5p.Google Scholar
  14. 14.
    Liu, H., and Y. Chen. 2014. Generic segment-wise DC for 3D-HEVC depth intra coding. In IEEE International Conference on Image Processing, 3219–3222.Google Scholar
  15. 15.
    Merkle, P., K. Müller, D. Marpe, and T. Wiegand. 2016. Depth intra coding for 3D video based on geometric primitives. IEEE Transactions on Circuits and Systems for Video Technology 26 (3): 570–582.CrossRefGoogle Scholar
  16. 16.
    Sanchez, G., R. Cataldo, R. Fernandes, L. Agostini, and C. Marcon. 2016. 3D-HEVC depth prediction complexity analysis. In IEEE International Conference on Electronics, Circuits, and Systems, 348–351.Google Scholar
  17. 17.
    Sanchez, G., J. Silveira, L. Agostini, and C. Marcon. 2018. Performance analysis of depth intra coding in 3D-HEVC. IEEE Transactions on Circuits and Systems for Video Technology 1 (1): 1–12.Google Scholar
  18. 18.
    Sanchez, G., L. Agostini, and C. Marcon. 2018. A reduced computational effort mode-level scheme for 3D-HEVC depth maps intra-frame prediction. Journal of Visual Communication and Image Representation 54 (1): 193–203.CrossRefGoogle Scholar
  19. 19.
    Sanchez, G., L. Jordani, C. Marcon, and L. Agostini. 2016. DFPS: A fast pattern selector for depth modeling mode 1 in three-dimensional high-efficiency video coding standard. Journal of Electronic Imaging 25 (6): 063011.CrossRefGoogle Scholar
  20. 20.
    Sanchez, G., L. Agostini, and C. Marcon. 2017. Complexity reduction by modes reduction in RD-list for intra-frame prediction in 3D-HEVC depth maps. In IEEE International Symposium on Circuits and Systems, 1–4.Google Scholar
  21. 21.
    Saldanha, M., G. Sanchez, C. Marcon, and L. Agostini. 2018. Fast 3D-Hevc depth maps intra-frame prediction using data mining. In IEEE International Conference on Acoustics, Speech and Signal Processing, 1738–1742.Google Scholar
  22. 22.
    Sanchez, G., M. Saldanha, B. Zatt, M. Porto, L. Agostini, and C. Marcon. 2017. Edge-aware depth motion estimation—A complexity reduction scheme for 3D-HEVC. In European Signal Processing Conference, 1524–1528.Google Scholar
  23. 23.
    Saldanha, M., G. Sanchez, C. Marcon, and L. Agostini. 2018. Block-level fast coding scheme for depth maps in three-dimensional high efficiency video coding. Journal of Electronic Imaging 27 (1): 010502.CrossRefGoogle Scholar
  24. 24.
    ———. 2019. Fast 3D-HEVC depth maps encoding using machine learning. IEEE Transactions on Circuits and Systems for Video Technology 1–1: 12.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gustavo Sanchez
    • 1
  • Luciano Agostini
    • 2
  • César Marcon
    • 3
  1. 1.Centro de InformáticaInstituto Federal Farroupilha (IFFAR)AlegreteBrazil
  2. 2.Video Technology Research Group (ViTech)Federal University of Pelotas (UFPel)PelotasBrazil
  3. 3.Polytechnic SchoolPontifical Catholic University of Rio Grande do Sul (PUCRS)Porto Alegre Brazil

Personalised recommendations