Skip to main content

Weak Keys in the Faure–Loidreau Cryptosystem

  • Conference paper
  • First Online:
Code-Based Cryptography (CBC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11666))

Included in the following conference series:

Abstract

Some types of weak keys in the Faure–Loidreau (FL) cryptosystem are presented. We show that from such weak keys the private key can be reconstructed with a computational effort that is substantially lower than the security level (≈225 operations for 80-bit security). The proposed key-recovery attack is based on ideas of generalized minimum distance (GMD) decoding for rank-metric codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note, that by definition 2ξ is always an integer (see (8)).

  2. 2.

    There may be estimates \(\hat{\mathbf {c}}^{(1)}\) at rank distance w from kpub such that \(\hat{\mathbf {c}}^{(1)}\ne {\mathbf {c}}^{(1)}\). However, this event is very unlikely since ξ is very small for the considered parameters (see Table 1) and was not observed in our simulations.

References

  1. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  3. Loidreau, P.: Designing a rank metric based McEliece cryptosystem. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 142–152. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2_11

    Chapter  Google Scholar 

  4. McEliece, R.J.: A public-key cryptosystem based on algebraic codes. Deep Space Network Progress Report 44, pp. 114–116 (1978)

    Google Scholar 

  5. Faure, C., Loidreau, P.: A new public-key cryptosystem based on the problem of reconstructing p–polynomials. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 304–315. Springer, Heidelberg (2006). https://doi.org/10.1007/11779360_24

    Chapter  Google Scholar 

  6. Augot, D., Finiasz, M.: A public key encryption scheme based on the polynomial reconstruction problem. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 229–240. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_14

    Chapter  Google Scholar 

  7. Wachter-Zeh, A., Puchinger, S., Renner, J.: Repairing the Faure-Loidreau public-key cryptosystem. In: IEEE International Symposium on Information Theory (ISIT) (2018)

    Google Scholar 

  8. Gaborit, P., Otmani, A., Kalachi, H.T.: Polynomial-time key recovery attack on the Faure-Loidreau scheme based on Gabidulin codes. Des. Codes Crypt. 86(7), 1391–1403 (2018)

    Article  MathSciNet  Google Scholar 

  9. Loidreau, P., Overbeck, R.: Decoding rank errors beyond the error correcting capability. In: International Workshop on Algebraic and Combinatorial Coding Theory (ACCT), pp. 186–190, September 2006

    Google Scholar 

  10. Forney, G.: Generalized minimum distance decoding. IEEE Trans. Inf. Theory 12(2), 125–131 (1966)

    Article  MathSciNet  Google Scholar 

  11. Bossert, M., Costa, E., Gabidulin, E., Schulz, E., Weckerle, M.: Verfahren und Kommunikationsvorrichtung zum Dekodieren von mit einem Rang-Code codierten Daten, EU Patent EP20 040 104 458 (2003)

    Google Scholar 

  12. Gabidulin, E.M.: Theory of codes with maximum rank distance. Problemy Peredachi Informatsii 21(1), 3–16 (1985)

    MathSciNet  MATH  Google Scholar 

  13. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Rank errors and rank erasures correction. In: 4th International Colloquium on Coding Theory (1991)

    Google Scholar 

  14. Richter, G., Plass, S.: Error and erasure decoding of rank-codes with a modified Berlekamp-Massey algorithm. In: International ITG Conference on Systems, Communications and Coding (SCC) (2004)

    Google Scholar 

  15. Gabidulin, E.M., Pilipchuk, N.I.: Error and erasure correcting algorithms for rank codes. Des. Codes Crypt. 49(1–3), 105–122 (2008)

    Article  MathSciNet  Google Scholar 

  16. Silva, D.: Error control for network coding, Ph.D. dissertation (2009)

    Google Scholar 

  17. Sidorenko, V., Jiang, L., Bossert, M.: Skew-feedback shift-register synthesis and decoding interleaved Gabidulin codes. IEEE Trans. Inf. Theory 57(2), 621–632 (2011)

    Article  MathSciNet  Google Scholar 

  18. Wachter-Zeh, A., Zeh, A.: List and unique error-erasure decoding of interleaved Gabidulin codes with interpolation techniques. Des. Codes Crypt. 73(2), 547–570 (2014). https://doi.org/10.1007/s10623-014-9953-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Jerkovits or Hannes Bartz .

Editor information

Editors and Affiliations

A Appendix

A Appendix

1.1 A.1 Encryption

Let \(\mathbf{m }=(m_1 \ m_2 \ \dots \ m_{k-u}\ | \,0 \ \dots \ 0)\in {\mathbb F_{q^m}}^k\) be the plaintext.

  1. 1.

    Choose an element \(\alpha \in {\mathbb F_{q^{mu}}}\) at random.

  2. 2.

    Choose \(\mathbf{e }\in {\mathbb F_{q^m}}^n\) with rkq(e)≤tpub at random.

  3. 3.

    Compute the ciphertext \(\mathbf{c }\in {\mathbb F_{q^m}}^n\) as

    $$\begin{aligned} \mathbf {c}=\mathbf {m}\mathbf {G}+\mathrm{{Tr}}_{q^{mu}/q^m}(\alpha \mathbf {k}_\text {pub})+\mathbf {e}. \end{aligned}$$

1.2 A.2 Decryption

  1. 1.

    Compute

    $$\begin{aligned} \mathbf {c}\mathbf {P}&=\mathbf {m}\mathbf {G}\mathbf {P}+\mathrm{{Tr}}_{q^{mu}/q^m}(\alpha \mathbf {k}_\text {pub})\mathbf {P}+\mathbf {e}\mathbf {P}. \end{aligned}$$

    Due to the \({\mathbb F_{q^m}}\)-linearity of the trace we have

    $$\begin{aligned} \mathrm{{Tr}}_{q^{mu}/q^m}(\alpha \mathbf {k}_\text {pub})\mathbf {P} =\mathrm{{Tr}}_{q^{mu}/q^m}(\alpha \mathbf {x})\mathbf {G}\mathbf {P}+(\mathrm{{Tr}}_{q^{mu}/q^m}(\alpha \mathbf {s})\,|\,\mathbf {0}) \end{aligned}$$

    and get

    $$\begin{aligned} \mathbf {c}\mathbf {P}=(\mathbf {m}+\mathrm{{Tr}}_{q^{mu}/q^m}(\alpha \mathbf {x}))\mathbf {G}\mathbf {P}+(\mathrm{{Tr}}_{q^{mu}/q^m}(\alpha \mathbf {s})\,|\,\mathbf {0})+\mathbf {e}\mathbf {P}. \end{aligned}$$
  2. 2.

    Define GP′ as the last n − w columns of the product GP and let c′ and e′ be the last n − w positions of c and eP, respectively. Then we have that

    $$\begin{aligned} \mathbf {c}'=(\mathbf {m}+\mathrm{{Tr}}_{q^{mu}/q^m}(\alpha \mathbf {x}))\mathbf {G}_{P}'+\mathbf {e}' \end{aligned}$$

    with \(\mathrm {{rk}}_q(\mathbf{e }')\le {t_{\text {pub}}}=\left\lfloor \frac{n-k-w}{2}\right\rfloor \).

    Since GP′ is a generator matrix of Gab\([n-w,k]\) we can decode to remove e′ and get

    $$\begin{aligned} \mathbf {m}'&=\mathbf {m}+\mathrm{{Tr}}_{q^{mu}/q^m}(\alpha \mathbf {x}). \end{aligned}$$
  3. 3.

    Since \(\mathbf{m }=(m_1 \ m_2 \ \dots \ m_{k-u}\,|\,\underbrace{0 \ \dots \ 0}_{u})\) we have that the last u positions of m′ are

    $$\begin{aligned} m_i'=\mathrm{{Tr}}_{q^{mu}/q^m}(\alpha x_i), \qquad \forall i=k-u+1,\dots ,k. \end{aligned}$$

    Since \({\mathcal {X}}{\overset{{\text {def}}}{=}}(x_{k-u+1},\dots ,x_{k})\) forms an ordered basis of \({\mathbb F_{q^{mu}}}\) over \({\mathbb F_{q^m}}\) we can compute α as

    $$\begin{aligned} \alpha =\sum _{i=k-u+1}^{k}\mathrm{{Tr}}_{q^{mu}/q^m}(\alpha x_i)x_i^{\perp }=\sum _{i=k-u+1}^{k}m_{i}'x_i^{\perp }, \end{aligned}$$

    where \({\mathcal {X}}^{\perp }{\overset{{\text {def}}}{=}}(x_{k-u+1}^\perp ,\dots ,x_{k}^\perp )\) denotes the dual basis of 𝒳. Finally, we can recover the plaintext as

    $$\begin{aligned} \mathbf {m}=\mathbf {m}'-\mathrm{{Tr}}_{q^{mu}/q^m}(\alpha \mathbf {x}). \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jerkovits, T., Bartz, H. (2019). Weak Keys in the Faure–Loidreau Cryptosystem. In: Baldi, M., Persichetti, E., Santini, P. (eds) Code-Based Cryptography. CBC 2019. Lecture Notes in Computer Science(), vol 11666. Springer, Cham. https://doi.org/10.1007/978-3-030-25922-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25922-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25921-1

  • Online ISBN: 978-3-030-25922-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics