Skip to main content

DAGS: Reloaded Revisiting Dyadic Key Encapsulation

Part of the Lecture Notes in Computer Science book series (LNSC,volume 11666)

Abstract

In this paper we revisit some of the main aspects of the DAGS Key Encapsulation Mechanism, one of the code-based candidates to NIST’s standardization call for the key exchange/encryption functionalities. In particular, we modify the algorithms for key generation, encapsulation and decapsulation to fit an alternative KEM framework, and we present a new set of parameters that use binary codes. We discuss advantages and disadvantages for each of the variants proposed.

Keywords

  • Post-quantum cryptography
  • Code-based cryptography
  • Key exchange

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-25922-8_4
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-25922-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)

Notes

  1. 1.

    If A is not invertible, abort and go back to 1.

  2. 2.

    This is mostly a formal difference, since \(\tilde{H}\) is in fact the public key.

  3. 3.

    In alternant form.

  4. 4.

    See next section for details.

References

  1. Banegas, G., et al.: DAGS: key encapsulation using dyadic GS codes. J. Math. Cryptol. 12, 221–239 (2018)

    MathSciNet  CrossRef  Google Scholar 

  2. Banegas, G., Barreto, P.S.L.M., Persichetti, E., Santini, P.: Designing efficient dyadic operations for cryptographic applications. IACR Cryptology ePrint Archive 2018, p. 650 (2018)

    Google Scholar 

  3. Bardet, M., Bertin, M., Couvreur, A., Otmani, A.: Practical algebraic attack on DAGS. To appear

    Google Scholar 

  4. Barelli, É., Couvreur, A.: An efficient structural attack on NIST submission DAGS. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 93–118. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_4

    CrossRef  Google Scholar 

  5. Bernstein, D.J., Persichetti, E.: Towards KEM unification. IACR Cryptology ePrint Archive 2018, p. 526 (2018)

    Google Scholar 

  6. Cayrel, P.-L., Hoffmann, G., Persichetti, E.: Efficient Implementation of a CCA2-Secure Variant of McEliece Using Generalized Srivastava Codes. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 138–155. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_9

    CrossRef  Google Scholar 

  7. https://classic.mceliece.org/

  8. http://www.dags-project.org

  9. Faugere, J.-C., Otmani, A., Perret, L., De Portzamparc, F., Tillich, J.-P.: Structural cryptanalysis of McEliece schemes with compact keys. DCC 79(1), 87–112 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of McEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_14

    CrossRef  Google Scholar 

  11. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P:. Algebraic cryptanalysis of McEliece variants with compact keys - towards a complexity analysis. In: Proceedings of the 2nd International Conference on Symbolic Computation and Cryptography, SCC 2010, pp. 45–55. RHUL, June 2010

    CrossRef  Google Scholar 

  12. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC), pp. 212–219, May 1996

    Google Scholar 

  13. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12

    CrossRef  MATH  Google Scholar 

  14. https://keccak.team/kangarootwelve.html

  15. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Elsevier, Amsterdam (1977). North-Holland Mathematical Library

    MATH  Google Scholar 

  16. Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-7_24

    CrossRef  Google Scholar 

  17. https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization

  18. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece cryptosystem without random oracles. Des. Code. Cryptogr. 49(1–3), 289–305 (2008)

    MathSciNet  CrossRef  Google Scholar 

  19. Persichetti, E.: Compact McEliece keys based on quasi-dyadic Srivastava codes. J. Math. Cryptol. 6(2), 149–169 (2012)

    MathSciNet  CrossRef  Google Scholar 

  20. Sarwate, D.: On the complexity of decoding Goppa codes. IEEE Trans. Inf. Theory 23(4), 515–516 (1977)

    MathSciNet  CrossRef  Google Scholar 

  21. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    MathSciNet  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Persichetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Banegas, G. et al. (2019). DAGS: Reloaded Revisiting Dyadic Key Encapsulation. In: Baldi, M., Persichetti, E., Santini, P. (eds) Code-Based Cryptography. CBC 2019. Lecture Notes in Computer Science(), vol 11666. Springer, Cham. https://doi.org/10.1007/978-3-030-25922-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25922-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25921-1

  • Online ISBN: 978-3-030-25922-8

  • eBook Packages: Computer ScienceComputer Science (R0)