Banegas, G., et al.: DAGS: key encapsulation using dyadic GS codes. J. Math. Cryptol. 12, 221–239 (2018)
MathSciNet
CrossRef
Google Scholar
Banegas, G., Barreto, P.S.L.M., Persichetti, E., Santini, P.: Designing efficient dyadic operations for cryptographic applications. IACR Cryptology ePrint Archive 2018, p. 650 (2018)
Google Scholar
Bardet, M., Bertin, M., Couvreur, A., Otmani, A.: Practical algebraic attack on DAGS. To appear
Google Scholar
Barelli, É., Couvreur, A.: An efficient structural attack on NIST submission DAGS. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 93–118. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_4
CrossRef
Google Scholar
Bernstein, D.J., Persichetti, E.: Towards KEM unification. IACR Cryptology ePrint Archive 2018, p. 526 (2018)
Google Scholar
Cayrel, P.-L., Hoffmann, G., Persichetti, E.: Efficient Implementation of a CCA2-Secure Variant of McEliece Using Generalized Srivastava Codes. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 138–155. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_9
CrossRef
Google Scholar
https://classic.mceliece.org/
http://www.dags-project.org
Faugere, J.-C., Otmani, A., Perret, L., De Portzamparc, F., Tillich, J.-P.: Structural cryptanalysis of McEliece schemes with compact keys. DCC 79(1), 87–112 (2016)
MathSciNet
MATH
Google Scholar
Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of McEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_14
CrossRef
Google Scholar
Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P:. Algebraic cryptanalysis of McEliece variants with compact keys - towards a complexity analysis. In: Proceedings of the 2nd International Conference on Symbolic Computation and Cryptography, SCC 2010, pp. 45–55. RHUL, June 2010
CrossRef
Google Scholar
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC), pp. 212–219, May 1996
Google Scholar
Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12
CrossRef
MATH
Google Scholar
https://keccak.team/kangarootwelve.html
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Elsevier, Amsterdam (1977). North-Holland Mathematical Library
MATH
Google Scholar
Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-7_24
CrossRef
Google Scholar
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece cryptosystem without random oracles. Des. Code. Cryptogr. 49(1–3), 289–305 (2008)
MathSciNet
CrossRef
Google Scholar
Persichetti, E.: Compact McEliece keys based on quasi-dyadic Srivastava codes. J. Math. Cryptol. 6(2), 149–169 (2012)
MathSciNet
CrossRef
Google Scholar
Sarwate, D.: On the complexity of decoding Goppa codes. IEEE Trans. Inf. Theory 23(4), 515–516 (1977)
MathSciNet
CrossRef
Google Scholar
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
MathSciNet
CrossRef
Google Scholar