Skip to main content

Syndromes of Resistance to Thyroid Hormone Action

  • Chapter
  • First Online:
Genetics of Endocrine Diseases and Syndromes

Part of the book series: Experientia Supplementum ((EXS,volume 111))

Abstract

Thyroid hormone (TH) action is crucial for the development of several tissues.

A number of syndromes are associated with reduced responsiveness to thyroid hormones, expanding the original definition of thyroid hormone resistance, firstly described by Refetoff and collaborators in 1967, which is characterized by elevated circulating levels of T4 and T3 with measurable serum TSH concentrations, as a consequence of mutations of thyroid hormone receptor beta (TRβ), recently named as RTHβ. More recently, another form of insensitivity to TH has been identified due to mutations in the thyroid hormone receptor alpha (TRα), named RTHα. In this chapter we will focus the discussion on the phenotype of RTHβ and RTHα. These diseases share the same pathogenic mechanism caused by dominant negative mutations in TH receptor genes that reduce T3 binding or affect the recruitment of cofactors. As a consequence, thyroid hormone actions are impaired at the tissue level. The phenotypic manifestations of RTHβ and RTHα are to some extent correlated with the degree of disruption and the tissue distribution of the TRs being characterized by variable coexistence of hypothyroid or thyrotoxic manifestations in RTHβ or by a congenital hypothyroid features in RTHα despite normal TSH and borderline low free T4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADHD:

Attention deficit hyperactivity disorders

BBB:

Blood–brain barrier

BMR:

Basal metabolic rate

CNS:

Central nervous system

DIO1:

Type 1 deiodinase

DIO2:

Type 2 deiodinase

DIO3:

Type 3 deiodinase

GRTH:

Generalized resistance to thyroid hormone

α-GSU:

Alpha subunit of glycoprotein hormones

ICTP:

Serum carboxy-terminal telopeptide of type 1 collagen

LAT1:

L-Type amino acid transporter 1

LAT2:

L-Type amino acid transporter 2

LT4:

Levothyroxine

MCT8:

Monocarboxylate transporter 8

MCT10:

Monocarboxylate transporter 10

MRI:

Magnetic resonance imaging

OATP1C1:

Organic anion-transporting polypeptide 1c1

PRTH:

Pituitary resistance to thyroid hormone

REE:

Resting energy expenditure

RTHα:

Resistance to thyroid hormone alpha

RTHβ:

Resistance to thyroid hormone beta

RXR:

Retinoid X receptor

SECISBP :

Selenocysteine insertion sequence (SECIS)-binding protein 2

SHBG:

Sex hormone-binding globulin

TH:

Thyroid hormone

THRA:

Gene coding for thyroid hormone receptor alpha

THRB:

Gene coding for thyroid hormone receptor beta

TRE:

Thyroid hormone-responsive elements

TRIAC:

Triiodothyroacetic acid

TSHomas:

TSH-secreting pituitary adenomas

TR:

Thyroid hormone receptor

References

  • Amor AJ, Halperin I, Alfayate R et al (2014) Identification of four novel mutations in the thyroid hormone receptor-β gene in 164 Spanish and 2 Greek patients with resistance to thyroid hormone. Hormones 13:74–78

    Article  PubMed  Google Scholar 

  • Ando S, Sarlis NJ, Krishnan J et al (2001a) Aberrant alternative splicing of thyroid hormone receptor in a TSH-secreting pituitary tumor is a mechanism for hormone resistance. Mol Endocrinol 15:1529–1538

    Article  CAS  PubMed  Google Scholar 

  • Ando S, Sarlis NJ, Oldfield EH, Yen PM (2001b) Somatic mutation of TRbeta can cause a defect in negative regulation of TSH in a TSH-secreting pituitary tumor. J Clin Endocrinol Metab 86:5572–5576

    CAS  PubMed  Google Scholar 

  • Anselmo J, Cao D, Karrison T, Weiss RE, Refetoff S (2004) Fetal loss associated with excess thyroid hormone exposure. JAMA 292:691–695

    Article  CAS  PubMed  Google Scholar 

  • Astapova I, Lee LJ, Morales C, Tauber S, Bilban M, Hollenberg AN (2008) The nuclear corepressor, NCoR, regulates thyroid hormone action in vivo. Proc Natl Acad Sci USA 105:19544–19549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barca-Mayo O, Liao XH, Alonso M et al (2011) Thyroid hormone receptor alpha and regulation of type 3 deiodinase. Mol Endocrinol 25:575–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkoff MS, Kocherginsky M, Anselmo J, Weiss RE, Refetoff S (2010) Autoimmunity in patients with resistance to thyroid hormone. J Clin Endocrinol Metab 95:3189–3193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck-Peccoz P, Chatterjee VKK (1994) The variable clinical phenotype in thyroid hormone resistance syndrome. Thyroid 4:225–231

    Article  CAS  PubMed  Google Scholar 

  • Beck-Peccoz P, Persani L (2010) TSH-producing adenomas. In: Jameson LJ, DeGroot LJ (eds) Endocrinology, adult and pediatric, 6th edn. Sauderns Elsevier, Philadelphia, PA, pp 324–332

    Google Scholar 

  • Beck-Peccoz P, Piscitelli G, Cattaneo MG, Faglia G (1983) Successful treatment of hyperthyroidism due to nonneoplastic pituitary TSH hypersecretion with 3,5,3′-triiodothyroacetic acid (TRIAC). J Endocrinol Investig 6:217–223

    Article  CAS  Google Scholar 

  • Behr M, Ramsden DB, Loos U (1997) Deoxyribonucleic acid binding and transcriptional silencing by a truncated c-erbA beta 1 thyroid hormone receptor identified in a severely retarded patient with resistance to thyroid hormone. J Clin Endocrinol Metab 82:1081–1087

    CAS  PubMed  Google Scholar 

  • Bochukova E, Schoenmakers N, Agostini M et al (2012) A mutation in the thyroid hormone receptor alpha gene. N Engl J Med 19:243–249

    Article  CAS  Google Scholar 

  • Bradley DJ, Towle HC, Young WS 3rd (1992) Spatial and temporal expression of α- and β-thyroid hormone receptor mRNAs, including the β2-subtype, in the developing mammalian nervous system. J Neurosci 12:2288–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brucker-Davis F, Skarulis MC et al (1995) Genetic and clinical features of 42 kindreds with resistance to thyroid hormone. The National Institutes of Health Prospective Study. Ann Intern Med 15:572–583

    Article  Google Scholar 

  • Brucker-Davis F, Skarulis MC, Pikus A et al (1996) Prevalence and mechanisms of hearing loss in patients with resistance to thyroid hormone. J Clin Endocrinol Metab 81:2768–2772

    CAS  PubMed  Google Scholar 

  • Campi I, Cammarata G, Bianchi Marzoli S et al (2017) Retinal photoreceptor functions are compromised in patients with resistance to thyroid hormone syndrome (RTHβ). J Clin Endocrinol Metab 102:2620–2627

    Article  PubMed  Google Scholar 

  • Cardoso LF, de Paula FJ, Maciel LM (2014) Resistance to thyroid hormone due to mutations in the THRB gene impairs bone mass and affects calcium and phosphorus homeostasis. Bone 67:222–227

    Article  CAS  PubMed  Google Scholar 

  • Cheng SY, Leonard JL, Davis PJ (2010) Molecular aspects of thyroid hormone actions. Endocr Rev 31:139–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demir K, van Gucht AL, Büyükinan M et al (2016) Diverse genotypes and phenotypes of three novel thyroid hormone receptor alpha mutations. J Clin Endocrinol Metab 101:2945–2954

    Article  CAS  PubMed  Google Scholar 

  • Desouza LA, Ladiwala U, Daniel SM, Agashe S, Vaidya RA, Vaidya VA (2005) Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain. Mol Cell Neurosci 29:414–426

    Article  CAS  PubMed  Google Scholar 

  • Dumitrescu AM, Refetoff S (2012) The syndromes of reduced sensitivity to thyroid hormone. Biochim Biophys Acta 1830:3987–4003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fauquier T, Chatonnet F, Picou F et al (2014) Purkinje cells and Bergmann glia are primary targets of the TRα1 thyroid hormone receptor during mouse cerebellum postnatal development. Development 141:166–175

    Article  CAS  PubMed  Google Scholar 

  • Ferrara AM, Onigata K, Ercan O, Woodhead H, Weiss RE, Refetoff S (2012) Homozygous thyroid hormone receptor β-gene mutations in resistance to thyroid hormone: three new cases and review of the literature. J Clin Endocrinol Metab 97:1328–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank-Raue K, Lorenz A, Haag C et al (2004) Severe form of thyroid hormone resistance in a patient with homozygous/hemizygous mutation of T3 receptor gene. Eur J Endocrinol 150:819–823

    Article  CAS  PubMed  Google Scholar 

  • Gurgel MH, Montenegro Junior RM, Magalhaes RA et al (2008) E449X mutation in the thyroid hormone receptor beta associated with autoimmune thyroid disease and severe neuropsychomotor involvement. Arq Bras Endocrinol Metabol 52:1205–1210

    Article  PubMed  Google Scholar 

  • Hartley MD, Kirkemo LL, Banerji T, Scanlan TS (2017) A thyroid hormone-based strategy for correcting the biochemical abnormality in X-linked adrenoleukodystrophy. Endocrinology 158:1328–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser P, Zametkin AJ, Martinez P et al (1993) Attention deficit-hyperactivity disorder in people with generalized resistance to thyroid hormone. N Engl J Med 8:997–1001

    Article  Google Scholar 

  • Hernandez A, Martinez ME, Fiering S et al (2006) Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest 116:476–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heuer H, Mason CA (2003) Thyroid hormone induces cerebellar Purkinje cell dendritic development via the thyroid hormone receptor alpha1. J Neurosci 19:10604–10612

    Article  Google Scholar 

  • Hodin RA, Lazar MA, Wintman BI et al (1989) Identification of a thyroid hormone receptor that is pituitary-specific. Science 7:76–79

    Article  Google Scholar 

  • Hu X, Lazar MA (2000) Transcriptional repression by nuclear hormone receptors. Trends Endocrinol Metab 11:6–10

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Roeder RG (2001) The TRAP/SMCC/mediator complex and thyroid hormone receptor function. Trends Endocrinol Metab 12:127–134

    Article  CAS  PubMed  Google Scholar 

  • Kahaly GJ, Matthews CH, Mohr-Kahaly S, Richards CA, Chatterjee VK (2002) Cardiac involvement in thyroid hormone resistance. J Clin Endocrinol Metab 87:204–212

    Article  CAS  PubMed  Google Scholar 

  • Kaneshige M, Suzuki H, Kaneshige K et al (2001) A targeted dominant negative mutation of the thyroid hormone alpha 1 receptor causes increased mortality, infertility, and dwarfism in mice. Proc Natl Acad Sci USA 98:15095–15100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor R, van Hogerlinden M, Wallis K et al (2010) Unliganded thyroid hormone receptor alpha1 impairs adult hippocampal neurogenesis. FASEB J 24:4793–4805

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R, Ghosh H, Nordstrom K, Vennstrom B, Vaidya VA (2011) Loss of thyroid hormone receptor β is associated with increased progenitor proliferation and NeuroD positive cell number in the adult hippocampus. Neurosci Lett 7:199–203

    Article  CAS  Google Scholar 

  • Lechan RM, Qi Y, Jackson IM, Mahdavi V (1994) Identification of thyroid hormone receptor isoforms in thyrotropin-releasing hormone neurons of the hypothalamic paraventricular nucleus. Endocrinology 135:92–100

    Article  CAS  PubMed  Google Scholar 

  • Leonard CM, Martinez P, Weintraub BD, Hauser P (1995) Magnetic resonance imaging of cerebral anomalies in subjects with resistance to thyroid hormone. Am J Med Genet 19:238–243

    Article  Google Scholar 

  • Marelli F, Carra S, Rurale G, Cotelli F, Persani L (2017) In vivo functional consequences of human THRA variants expressed in the zebrafish. Thyroid 27:279–291

    Article  CAS  PubMed  Google Scholar 

  • Matochik JA, Zametkin AJ, Cohen RM, Hauser P, Weintraub BD (1996) Abnormalities in sustained attention and anterior cingulate metabolism in subjects with resistance to thyroid hormone. Brain Res 3:23–28

    Article  Google Scholar 

  • Menzaghi C, Di Paola R, Corrias A et al (1998) T426I a new mutation in the thyroid hormone receptor beta gene in a sporadic patient with resistance to thyroid hormone and dysmorphism. Mutations in brief no. 192. Hum Mutat 12:289

    CAS  PubMed  Google Scholar 

  • Mitchell CS, Savage DB, Dufour S et al (2010) Resistance to thyroid hormone is associated with raised energy expenditure, muscle mitochondrial uncoupling, and hyperphagia. J Clin Invest 120:1345–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran C, Schoenmakers N, Agostini M et al (2013) An adult female with resistance to thyroid hormone mediated by defective thyroid hormone receptor α. J Clin Endocrinol Metab 98:4254–4261

    Article  CAS  PubMed  Google Scholar 

  • Moran C, Agostini M, Visser WE et al (2014) Resistance to thyroid hormone caused by a mutation in thyroid hormone receptor TRα1 and TRα2: clinical, biochemical, and genetic analyses of three related patients. Lancet Diabetes Endocrinol 2:619–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran C, Agostini M, McGowan A et al (2017) Contrasting phenotypes in resistance to thyroid hormone alpha correlate with divergent properties of thyroid hormone receptor α1 mutant proteins. Thyroid 27:973–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng L, Cordas E, Wu X, Vella KR, Hollenberg AN, Forrest D (2015) Age-related hearing loss and degeneration of cochlear hair cells in mice lacking thyroid hormone receptor β1. Endocrinology 156:3853–3865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono S, Schwartz ID, Mueller OT, Root AW, Usala SJ, Bercu BB (1991) Homozygosity for a dominant negative thyroid hormone receptor gene responsible for generalized resistance to thyroid hormone. J Clin Endocrinol Metab 73(5):990–994.

    Article  CAS  Google Scholar 

  • O’Shea PJ, Bassett JH, Cheng SY, Williams GR (2006) Characterization of skeletal phenotypes of TRalpha1 and TRbeta mutant mice: implications for tissue thyroid status and T3 target gene expression. Nucl Recept Signal 4:1–5

    Google Scholar 

  • Owen PJ, Chatterjee VK, John R, Halsall D, Lazarus JH (2009) Augmentation index in resistance to thyroid hormone (RTH). Clin Endocrinol 70:650–654

    Article  CAS  Google Scholar 

  • Pappa T, Anselmo J, Mamanasiri S, Dumitrescu AM, Weiss RE, Refetoff S (2017) Prenatal diagnosis of resistance to thyroid hormone and its clinical implications. J Clin Endocrinol Metab 102:3775–3782

    Article  PubMed  PubMed Central  Google Scholar 

  • Persani L, Asteria C, Tonacchera M et al (1994) Evidence for the secretion of thyrotropin with enhanced bioactivity in syndromes of thyroid hormone resistance. J Clin Endocrinol Metab 78:1034–1039

    CAS  PubMed  Google Scholar 

  • Persani L, Brabant G, Dattani M et al (2018) 2018 European Thyroid Association (ETA) guidelines on the diagnosis and management of central hypothyroidism. Eur Thyroid J 7(5):225–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips SA, Rotman-Pikielny P, Lazar J et al (2001) Extreme thyroid hormone resistance in a patient with a novel truncated TR mutant. J Clin Endocrinol Metab 86:5142–5147

    Article  CAS  PubMed  Google Scholar 

  • Prats-Puig A, Carreras-Badosa G, Bassols J et al (2017) The placental imprinted DLK1-DIO3 domain: a new link to prenatal and postnatal growth in humans. Am J Obstet Gynecol 217:350.e1–350.e13

    Article  CAS  Google Scholar 

  • Pulcrano M, Palmieri EA, Mannavola D et al (2009) Impact of resistance to thyroid hormone on the cardiovascular system in adults. J Clin Endocrinol Metab 94:2812–2816

    Article  CAS  PubMed  Google Scholar 

  • Refetoff S, Dumitrescu AM (2007) Syndromes of reduced sensitivity to thyroid hormone: genetic defects in hormone receptors, cell transporters and deiodination. Best Pract Res Clin Endocrinol Metab 21:277–305

    Article  CAS  PubMed  Google Scholar 

  • Refetoff S, Bassett JH, Beck-Peccoz P et al (2014) Classification and proposed nomenclature for inherited defects of thyroid hormone action, cell transport, and metabolism. Eur Thyroid J 3:7–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Reutrakul S, Sadow PM, Pannain S et al (2000) Search for abnormalities of nuclear corepressors, coactivators, and a coregulator in families with resistance to thyroid hormone without mutations in thyroid hormone receptor beta or alpha genes. J Clin Endocrinol Metab 85:3609–3617

    CAS  PubMed  Google Scholar 

  • Schoenmakers E, Agostini M, Mitchell C et al (2010) Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Invest 120:4220–4235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenmakers N, Moran C, Peeters RP, Visser T, Gurnell M, Chatterjee K (2013) Resistance to thyroid hormone mediated by defective thyroid hormone receptor alpha. Biochim Biophys Acta 1830:4004–4008

    Article  CAS  PubMed  Google Scholar 

  • Schroeder AC, Privalsky ML (2014) Thyroid hormones, T3 and T4, in the brain. Front Endocrinol 31:5–40

    Google Scholar 

  • Sjouke B, Langslet G, Ceska R et al (2014) Eprotirome in patients with familial hypercholesterolaemia (the AKKA trial): a randomised, double-blind, placebo-controlled phase 3 study. Lancet Diabetes Endocrinol 2:455–463

    Article  CAS  PubMed  Google Scholar 

  • Stein MA, Weiss RE, Refetoff S (1995) Neurocognitive characteristics of individuals with resistance to thyroid hormone: comparisons with individuals with attention-deficit hyperactivity disorder. J Dev Behav Pediatr 16:406–411

    CAS  PubMed  Google Scholar 

  • Sun H, Wu H, Xie R et al (2019) New case of thyroid hormone resistance α caused by a mutation of THRA/TRα1. J Endocr Soc 3:665–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda K, Sakurai A, DeGroot LJ, Refetoff S (1992) Recessive inheritance of thyroid hormone resistance caused by complete deletion of the protein-coding region of the thyroid hormone receptor-beta gene. J Clin Endocrinol Metab 74:49–55

    CAS  PubMed  Google Scholar 

  • Torchia J, Glass C, Rosenfeld MG (1998) Co-activators and co-repressors in the integration of transcriptional responses. Curr Opin Cell Biol 10:373–383

    Article  CAS  PubMed  Google Scholar 

  • Tylki-Szymanska A, Acuna-Hidalgo R, Krajewska-Walasek M et al (2015) Thyroid hormone resistance syndrome due to mutations in the thyroid hormone receptor alpha gene (THRA). J Med Genet 52:312–316

    Article  CAS  PubMed  Google Scholar 

  • van der Spek AH, Surovtseva OV, Aan S et al (2017) Increased circulating interleukin-8 in patients with resistance to thyroid hormone receptor α. Endocr Connect 6:731–740

    Article  PubMed  PubMed Central  Google Scholar 

  • van Gucht A, Meima M, Zwaveling-Soonawala N et al (2016) Resistance to thyroid hormone alpha in an 18 months old girl; clinical, therapeutic and molecular characteristics. Thyroid 26:338–346

    Article  PubMed  CAS  Google Scholar 

  • Van Gucht ALM, Moran C, Meima ME et al (2017) Resistance to thyroid hormone due to heterozygous mutations in thyroid hormone receptor alpha. Curr Top Dev Biol 125:337–355

    Article  PubMed  Google Scholar 

  • van Mullem A, van Heerebeek R, Chrysis D et al (2012) Clinical phenotype and mutant TRα1. N Engl J Med 12:1451–1453

    Article  Google Scholar 

  • Vela A, Pérez-Nanclares G, Ríos I, Rica I, Portillo N, Castaño L, Spanish Group for the Study of RTH (2019) Thyroid hormone resistance from newborns to adults: a Spanish experience. J Endocrinol Investig. https://doi.org/10.1007/s40618-019-1007-4

    Article  CAS  PubMed  Google Scholar 

  • Visser WE, Friesema EC, Visser TJ (2011) Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol Endocrinol 25:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss RE, Stein MA, Refetoff S (1997) Behavioral effects of liothyronine (L-T3) in children with attention deficit hyperactivity disorder in the presence and absence of resistance to thyroid hormone. Thyroid 7:389–393

    Article  CAS  PubMed  Google Scholar 

  • Weiss RE, Dumitrescu A, Refetoff S (2010) Approach to the patient with resistance to thyroid hormone and pregnancy. J Clin Endocrinol Metab 95:3094–3102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss AH, Kelly JP, Bisset D, Deeb SS (2012) Reduced L- and M- and increased S-cone functions in an infant with thyroid hormone resistance due to mutations in the THRβ2 gene. Ophthalmic Genet 33:187–195

    Article  CAS  PubMed  Google Scholar 

  • Yuen RK, Thiruvahindrapuram B, Merico D et al (2015) Whole-genome sequencing of quartet families with autism spectrum disorder. Nat Med 21:185–191

    Article  CAS  PubMed  Google Scholar 

  • Zavacki AM, Ying H, Christoffolete MA, Aerts G, So E, Harney J (2005) Type 1 iodothyronine deiodinase is a sensitive marker of peripheral thyroid status in the mouse. Endocrinology 146:1568–1575

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Italian Ministry of Health, Rome (Fund RF-2010-2309484).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Persani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Persani, L., Campi, I. (2019). Syndromes of Resistance to Thyroid Hormone Action. In: Igaz, P., Patócs, A. (eds) Genetics of Endocrine Diseases and Syndromes. Experientia Supplementum, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-030-25905-1_5

Download citation

Publish with us

Policies and ethics