Skip to main content

Role of Connexins and Pannexins in Bone and Muscle Mass and Function

  • Chapter
  • First Online:
Osteosarcopenia: Bone, Muscle and Fat Interactions

Abstract

The fundamental role of connexins and pannexins in the development, maintenance and regeneration of both bone and muscle has been demonstrated over the last decade. It has long been known that connexins, either through gap junction channels, as hemichannels, or as channel independent signaling molecules, mediate the effect of stimuli that target bone. However, the role of pannexins in bone and whether pannexins also mediate the effects of these stimuli in bone requires more research. In skeletal muscle, the role of pannexins has become clearer and the importance of pannexins for muscle cell differentiation has been demonstrated in several studies. On the other hand, while connexins appear to only be expressed during differentiation, they also seem to have a role during disease onset and progression in muscle. In this chapter, we cover the current knowledge of the roles of connexins and pannexins in bone and muscle health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe Y, Kawakami A, Nakashima T, Ejima E, Fujiyama K, Kiriyama T, Ide A, Sera N, Usa T, Tominaga T, Ashizawa K, Yokoyama N, Eguchi K (2000) Etidronate inhibits human osteoblast apoptosis by inhibition of pro-apoptotic factor(s) produced by activated T cells. J Lab Clin Med 136(5):344–354

    Article  CAS  PubMed  Google Scholar 

  • Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O‘Brien CA, Bellido T, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC (2007) Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 282(37):27285–27297

    Article  CAS  PubMed  Google Scholar 

  • Araya R, Eckardt D, Riquelme MA, Willecke K, Saez JC (2003) Presence and importance of connexin43 during myogenesis. Cell Commun Adhes 10(4–6):451–456. doi:2BLDP1GTYY7A8466 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Araya R, Riquelme MA, Brandan E, Saez JC (2004) The formation of skeletal muscle myotubes requires functional membrane receptors activated by extracellular ATP. Brain Res Brain Res Rev 47 (1–3):174–188. doi:S0165017304000761 [pii];https://doi.org/10.1016/j.brainresrev.2004.06.003 [doi]

  • Araya R, Eckardt D, Maxeiner S, Kruger O, Theis M, Willecke K, Saez JC (2005) Expression of connexins during differentiation and regeneration of skeletal muscle: functional relevance of connexin43. J Cell Sci 118 (Pt 1):27–37. doi:jcs.01553 [pii];https://doi.org/10.1242/jcs.01553 [doi]

  • Batra N, Burra S, Siller-Jackson AJ, Gu S, Xia X, Weber GF, Desimone D, Bonewald LF, Lafer EM, Sprague E, Schwartz MA, Jiang JX (2012) Mechanical stress-activated integrin alpha5beta1 induces opening of connexin 43 hemichannels. Proc Natl Acad Sci U S A 109(9):3359–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batra N, Riquelme MA, Burra S, Rekha K, Gu S, Jiang JX (2014) Direct regulation of Osteocytic Connexin 43 Hemichannels through AKT kinase activated by mechanical stimulation. J Biol Chem 289(15):10582–10591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyer EC, Berthoud VM (2018) Gap junction gene and protein families: Connexins, innexins, and pannexins. Biochim Biophys Acta 1860(1):5–8. https://doi.org/10.1016/j.bbamem.2017.05.016

    Article  CAS  Google Scholar 

  • Bivi N, Bereszczak JZ, Romanello M, Zeef LA, Delneri D, Quadrifoglio F, Moro L, Brancia FL, Tell G (2009) Transcriptome and proteome analysis of osteocytes treated with nitrogen-containing bisphosphonates. J Proteome Res 8(3):1131–1142

    Article  CAS  PubMed  Google Scholar 

  • Bivi N, Farlow N, Brun L, Benson JD, Condon KW, Robling AG, Bellido T, Plotkin LI (2011a) Unexpected enhanced response to mechanical loading of mice lacking Cx43 exclusively in osteocytes. J Bone Miner Res 25(Suppl1):S11

    Google Scholar 

  • Bivi N, Lezcano V, Romanello M, Bellido T, Plotkin LI (2011b) Connexin43 interacts with barrestin: a pre-requisite for osteoblast survival induced by parathyroid hormone. J Cell Biochem 112(10):2920–2930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bivi N, Condon KW, Allen MR, Farlow N, Passeri G, Brun L, Rhee Y, Bellido T, Plotkin LI (2012a) Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. J Bone Min Res 27(2):374–389

    Article  CAS  Google Scholar 

  • Bivi N, Nelson MT, Faillace ME, Li J, Miller LM, Plotkin LI (2012b) Deletion of Cx43 from osteocytes results in defective bone material properties but does not decrease extrinsic strength in cortical bone. Calcif Tissue Int 91(3):215–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bivi N, Pacheco-Costa R, Brun LR, Murphy TR, Farlow NR, Robling AG, Bellido T, Plotkin LI (2013) Absence of Cx43 selectively from osteocytes enhances responsiveness to mechanical force in mice. J Orthop Res 31(7):1075–1081

    Article  CAS  PubMed  Google Scholar 

  • Bond SR, Lau A, Penuela S, Sampaio AV, Underhill TM, Laird DW, Naus CC (2011) Pannexin 3 is a novel target for Runx2, expressed by osteoblasts and mature growth plate chondrocytes. J Bone Miner Res 26(12):2911–2922

    Article  CAS  PubMed  Google Scholar 

  • Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26(2):229–238

    Article  CAS  PubMed  Google Scholar 

  • Brown RJ, Van Beek E, Watts DJ, Lowik CW, Papapoulos SE (1998) Differential effects of aminosubstituted analogs of hydroxy bisphosphonates on the growth of Dictyostelium discoideum. J Bone Min Res 13(2):253–258

    Article  CAS  Google Scholar 

  • Buck M, Poli V, Hunter T, Chojkier M (2001) C/EBPbeta phosphorylation by RSK creates a functional XEXD caspase inhibitory box critical for cell survival. Mol Cell 8(4):807–816

    Article  CAS  PubMed  Google Scholar 

  • Buvinic S, Almarza G, Bustamante M, Casas M, Lopez J, Riquelme M, Saez JC, Huidobro-Toro JP, Jaimovich E (2009) ATP released by electrical stimuli elicits calcium transients and gene expression in skeletal muscle. J Biol Chem 284(50):34490–34505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caskenette D, Penuela S, Lee V, Barr K, Beier F, Laird DW, Willmore KE (2016) Global deletion of Panx3 produces multiple phenotypic effects in mouse humeri and femora. J Anat. doi:https://doi.org/10.1111/joa.12437 [doi]

  • Cea LA, Cisterna BA, Puebla C, Frank M, Figueroa XF, Cardozo C, Willecke K, Latorre R, Saez JC (2013) De novo expression of connexin hemichannels in denervated fast skeletal muscles leads to atrophy. Proc Natl Acad Sci U S A 110 (40):16229–16234. doi:1312331110 [pii];https://doi.org/10.1073/pnas.1312331110 [doi]

  • Cea LA, Balboa E, Puebla C, Vargas AA, Cisterna BA, Escamilla R, Regueira T, Saez JC (2016a) Dexamethasone-induced muscular atrophy is mediated by functional expression of connexin-based hemichannels. Biochim Biophys Acta 1862 (10):1891-1899. doi:S0925-4439(16)30163-6 [pii];https://doi.org/10.1016/j.bbadis.2016.07.003 [doi]

  • Cea LA, Bevilacqua JA, Arriagada C, Cardenas AM, Bigot A, Mouly V, Saez JC, Caviedes P (2016b) The absence of dysferlin induces the expression of functional connexin-based hemichannels in human myotubes. BMC cell biol 17(Suppl 1):15. doi:https://doi.org/10.1186/s12860-016-0096-6 [doi];https://doi.org/10.1186/s12860-016-0096-6 [pii]

  • Cea LA, Puebla C, Cisterna BA, Escamilla R, Vargas AA, Frank M, Martinez-Montero P, Prior C, Molano J, Esteban-Rodriguez I, Pascual I, Gallano P, Lorenzo G, Pian H, Barrio LC, Willecke K, Saez JC (2016c) Fast skeletal myofibers of mdx mouse, model of Duchenne muscular dystrophy, express connexin hemichannels that lead to apoptosis. Cell Mol Life Sci 73 (13):2583–2599. doi:https://doi.org/10.1007/s00018-016-2132-2 [doi];https://doi.org/10.1007/s00018-016-2132-2 [pii]

  • Cheng B, Zhao S, Luo J, Sprague E, Bonewald LF, Jiang JX (2001) Expression of functional gap junctions and regulation by fluid flow in osteocyte-like MLO-Y4 cells. J Bone Miner Res 16(2):249–259

    Article  CAS  PubMed  Google Scholar 

  • Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX (2005) Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 16:3100–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung WY, Fritton JC, Morgan SA, Seref-Ferlengez Z, Basta-Pljakic J, Thi MM, Suadicani SO, Spray DC, Majeska RJ, Schaffler MB (2016) Pannexin-1 and P2X7-receptor are required for apoptotic osteocytes in fatigued bone to trigger RANKL production in neighboring bystander osteocytes. J Bone Miner Res 31 (4):890–899. doi:https://doi.org/10.1002/jbmr.2740 [doi]

    Article  CAS  PubMed  Google Scholar 

  • Chung D, Castro CH, Watkins M, Stains JP, Chung MY, Szejnfeld VL, Willecke K, Theis M, Civitelli R (2006) Low peak bone mass and attenuated anabolic response to parathyroid hormone in mice with an osteoblast-specific deletion of connexin43. J Cell Sci 119(Pt 20):4187–4198

    Article  CAS  PubMed  Google Scholar 

  • Cisterna BA, Vargas AA, Puebla C, Saez JC (2016) Connexin hemichannels explain the ionic imbalance and lead to atrophy in denervated skeletal muscles. Biochim Biophys Acta 1862 (11):2168-2176. doi:S0925-4439(16):30217–30214 [pii];https://doi.org/10.1016/j.bbadis.2016.08.020 [doi]

  • Civitelli R, Beyer EC, Warlow PM, Robertson AJ, Geist ST, Steinberg TH (1993) Connexin43 mediates direct intercellular communication in human osteoblastic cell networks. J Clin Invest 91:1888–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis HM, Pacheco-Costa R, Atkinson EG, Brun LR, Gortazar AR, Harris J, Hiasa M, Bolarinwa SA, Yoneda T, Ivan M, Bruzzaniti A, Bellido T, Plotkin LI (2017) Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging. Aging Cell 16(3):551–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis HM, Aref MW, Aguilar-Perez A, Pacheco-Costa R, Allen K, Valdez S, Herrera C, Atkinson EG, Mohammad A, Lopez D, Harris MA, Harris SE, Alen M, Bellido T, Plotkin LI (2018) Cx43 overexpression in osteocytes prevents osteocyte apoptosis and preserves cortical bone quality in aging mice. JBMR Plus. https://doi.org/10.1002/jbm4.10035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Follet H, Li J, Phipps RJ, Hui S, Condon K, Burr DB (2007) Risedronate and alendronate suppress osteocyte apoptosis following cyclic fatigue loading. Bone 40(4):1172–1177

    Article  CAS  PubMed  Google Scholar 

  • Frediani B, Spreafico A, Capperucci C, Chellini F, Gambera D, Ferrata P, Baldi F, Falsetti P, Santucci A, Bocchi L, Marcolongo R (2004) Long-term effects of neridronate on human osteoblastic cell cultures. Bone 35(4):859–869

    Article  CAS  PubMed  Google Scholar 

  • Furlan F, Lecanda F, Screen J, Civitelli R (2001) Proliferation, differentiation and apoptosis in connexin43-null osteoblasts. Cell Commun Adhes 8(4–6):367–371

    Article  CAS  PubMed  Google Scholar 

  • Gangoiti MV, Cortizo AM, Arnol V, Felice JI, McCarthy AD (2008) Opposing effects of bisphosphonates and advanced glycation end-products on osteoblastic cells. Eur J Pharmacol 600(1–3):140–147

    Article  CAS  PubMed  Google Scholar 

  • Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ (2007) Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol 212(1):207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genetos DC, Zhou Z, Li Z, Donahue HJ (2012) Age-related changes in gap junctional intercellular communication in osteoblastic cells. J Orthop Res 30(12):1979–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4(4):285–294

    Article  CAS  PubMed  Google Scholar 

  • Grimston SK, Brodt MD, Silva MJ, Civitelli R (2008) Attenuated response to in vivo mechanical loading in mice with conditional osteoblast ablation of the Connexin43 gene (Gja1). J Bone Miner Res 23(6):879–886. doi:https://doi.org/10.1359/jbmr.080222 [doi]

  • Grimston SK, Goldberg DB, Watkins M, Brodt MD, Silva MJ, Civitelli R (2011) Connexin43 deficiency reduces the sensitivity of cortical bone to the effects of muscle paralysis. J Bone Miner Res 26(9):2151–2160

    Article  CAS  PubMed  Google Scholar 

  • Grimston SK, Watkins MP, Brodt MD, Silva MJ, Civitelli R (2012) Enhanced periosteal and endocortical responses to axial tibial compression loading in conditional connexin43 deficient mice. PLoS One 7(9):e44222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idris AI, Rojas J, Greig IR, van’t Hof RJ, Ralston SH (2008) Aminobisphosphonates cause osteoblast apoptosis and inhibit bone nodule formation in vitro. Calcif Tissue Int 82(3):191–201. doi:https://doi.org/10.1007/s00223-008-9104-y [doi]

  • Ilvesaro J, Väänänen K, Tuukkanen J (2000) Bone-resorbing osteoclasts contain gap-junctional connexin-43. J Bone Min Res 15(5):919–926

    Article  CAS  Google Scholar 

  • Ilvesaro J, Tavi P, Tuukkanen J (2001) Connexin-mimetic peptide gap 27 decreases osteoclastic activity. BMC Musculoskelet Disord 2(1):10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa M, Williams GL, Ikeuchi T, Sakai K, Fukumoto S, Yamada Y (2016) Pannexin 3 and connexin 43 modulate skeletal development via distinct functions and expression patterns. J Cell Sci. doi:jcs.176883 [pii];https://doi.org/10.1242/jcs.176883 [doi]

  • Jones SJ, Gray C, Sakamaki H, Arora M, Boyde A, Gourdie R, Green C (1993) The incidence and size of gap junctions between the bone cells in rat calvaria. Anat Embryol (Berl ) 187(4):343–352

    Article  CAS  Google Scholar 

  • Jorgensen NR, Henriksen Z, Brot C, Eriksen EF, Sorensen OH, Civitelli R, Steinberg TH (2000) Human osteoblastic cells propagate intercellular calcium signals by two different mechanisms. J Bone Miner Res 15(6):1024–1032

    Article  CAS  PubMed  Google Scholar 

  • Jorquera G, Altamirano F, Contreras-Ferrat A, Almarza G, Buvinic S, Jacquemond V, Jaimovich E, Casas M (2013) Cav1.1 controls frequency-dependent events regulating adult skeletal muscle plasticity. J Cell Sci 126(Pt 5):1189–1198. doi:jcs.116855 [pii];https://doi.org/10.1242/jcs.116855 [doi]

  • Kar R, Riquelme MA, Werner S, Jiang JX (2013) Connexin 43 channels protect osteocytes against oxidative stress-induced cell death. J bone miner res 28 (7):1611-1621. Doi:https://doi.org/10.1002/jbmr.1917 [doi]

    Article  PubMed  CAS  Google Scholar 

  • Kogianni G, Mann V, Ebetino F, Nuttall M, Nijweide P, Simpson H, Noble B (2004) Fas/CD95 is associated with glucocorticoid-induced osteocyte apoptosis. Life Sci 75(24):2879–2895

    Article  CAS  PubMed  Google Scholar 

  • Koval M, Geist ST, Westphale EM, Kemendy AE, Civitelli R, Beyer EC, Steinberg TH (1995) Transfected connexin45 alters gap junction permeability in cells expressing endogenous connexin43. J Cell Biol 130(4):987–995

    Article  CAS  PubMed  Google Scholar 

  • Laing JG, Manley-Markowski RN, Koval M, Civitelli R, Steinberg TH (2001) Connexin45 interacts with zonula occludens-1 and connexin43 in osteoblastic cells. J Biol Chem 276(25):23051–23055. https://doi.org/10.1074/jbc.M100303200

    Article  CAS  PubMed  Google Scholar 

  • Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394(Pt 3):527–543. https://doi.org/10.1042/BJ20051922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langlois S, Cowan KN (2017) Regulation of skeletal muscle myoblast differentiation and proliferation by Pannexins. Adv Exp Med Biol 925:57–73. https://doi.org/10.1007/5584_2016_53

    Article  CAS  PubMed  Google Scholar 

  • Langlois S, Xiang X, Young K, Cowan BJ, Penuela S, Cowan KN (2014) Pannexin 1 and Pannexin 3 channels regulate skeletal muscle myoblast proliferation and differentiation. J Biol Chem 289(44):30717–30731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Vasseur M, Lelowski J, Bechberger JF, Sin WC, Naus CC (2014) Pannexin 2 protein expression is not restricted to the CNS. Front Cell Neurosci 8:392

    Article  PubMed  PubMed Central  Google Scholar 

  • Lecanda F, Towler DA, Ziambaras K, Cheng SL, Koval M, Steinberg TH, Civitelli R (1998) Gap junctional communication modulates gene expression in osteoblastic cells. Mol Biol Cell 9(8):2249–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecanda F, Warlow PM, Sheikh S, Furlan F, Steinberg TH, Civitelli R (2000) Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol 151(4):931–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lezcano V, Bellido T, Plotkin LI, Boland R, Morelli S (2012) Role of connexin 43 in the mechanism of action of alendronate: dissociation of anti-apoptotic and proliferative signaling pathways. Arch Biochem Biophys 518(2):95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Liu D, Ke HZ, Duncan RL, Turner CH (2005) The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J Biol Chem 280(52):42952–42959

    Article  CAS  PubMed  Google Scholar 

  • Lima F, Niger C, Hebert C, Stains JP (2009) Connexin43 potentiates osteoblast responsiveness to fibroblast growth factor 2 via a protein kinase C-Delta/Runx2-dependent mechanism. Mol Biol Cell 20:2697–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd SA, Lewis GS, Zhang Y, Paul EM, Donahue HJ (2012) Connexin 43 deficiency attenuates loss of trabecular bone and prevents suppression of cortical bone formation during unloading. J Bone Miner Res 27(11):2359–2372

    Article  CAS  PubMed  Google Scholar 

  • Loiselle AE, Paul EM, Lewis GS, Donahue HJ (2013) Osteoblast and osteocyte-specific loss of Connexin43 results in delayed bone formation and healing during murine fracture healing. J Orthop Res 31(1):147–154

    Article  CAS  PubMed  Google Scholar 

  • Merrifield PA, Laird DW (2016) Connexins in skeletal muscle development and disease. Semin Cell Dev Biol 50:67–73. https://doi.org/10.1016/j.semcdb.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  • Moorer MC, Stains JP (2017) Connexin43 and the intercellular signaling network regulating skeletal remodeling. Curr Osteoporos Rep. doi:https://doi.org/10.1007/s11914-017-0345-4 [doi];https://doi.org/10.1007/s11914-017-0345-4 [pii]

  • Moorer MC, Hebert C, Tomlinson RE, Iyer SR, Chason M, Stains JP (2017) Defective signaling, osteoblastogenesis, and bone remodeling in a mouse model of connexin43 C-terminal truncation. J Cell Sci 130(3):531–540. doi:jcs.197285 [pii];https://doi.org/10.1242/jcs.197285 [doi]

  • Morelli S, Bilbao PS, Katz S, Lezcano V, Roldan E, Boland R, Santillan G (2011) Protein phosphatases: possible bisphosphonate binding sites mediating stimulation of osteoblast proliferation. Arch Biochem Biophys 507(2):248–253

    Article  CAS  PubMed  Google Scholar 

  • Niger C, Buo AM, Hebert C, Duggan BT, Williams MS, Stains JP (2012) ERK acts in parallel to PKC delta to mediate the Connexin43-dependent potentiation of Runx2 activity by FGF2 in MC3T3 osteoblasts. Am J Physiol Cell Physiol 302(7):C1035–C1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacheco-Costa R, Hassan I, Reginato RD, Davis HM, Bruzzaniti A, Allen MR, Plotkin LI (2014) High bone mass in mice lacking Cx37 due to defective osteoclast differentiation. J Biol Chem 289(12):8508–8520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacheco-Costa R, Davis HM, Sorenson C, Hon MC, Hassan I, Reginato RD, Allen MR, Bellido T, Plotkin LI (2015) Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain. Bone 81:632–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacheco-Costa R, Kadakia JR, Atkinson EG, Wallace JM, Plotkin LI, Reginato RD (2017) Connexin37 deficiency alters organic bone matrix, cortical bone geometry, and increases Wnt/beta-catenin signaling. Bone 97:105–113. doi:S8756-3282(17)30010-8 [pii];https://doi.org/10.1016/j.bone.2017.01.010 [doi]

  • Pan B, To LB, Farrugia AN, Findlay DM, Green J, Gronthos S, Evdokiou A, Lynch K, Atkins GJ, Zannettino AC (2004) The nitrogen-containing bisphosphonate, zoledronic acid, increases mineralisation of human bone-derived cells in vitro. Bone 34(1):112–123

    Article  CAS  PubMed  Google Scholar 

  • Panchin Y, Kelmanson I, Matz M, Lukyanov K, Usman N, Lukyanov S (2000) A ubiquitous family of putative gap junction molecules. Curr Biol 10(13):R473–R474

    Article  CAS  PubMed  Google Scholar 

  • Pillon NJ, Li YE, Fink LN, Brozinick JT, Nikolayev A, Kuo MS, Bilan PJ, Klip A (2014) Nucleotides released from palmitate-challenged muscle cells through pannexin-3 attract monocytes. Diabetes 63(11):3815–3826. https://doi.org/10.2337/db14-0150

    Article  CAS  PubMed  Google Scholar 

  • Plotkin LI (2014) Connexin 43 hemichannels and intracellular signaling in bone cells. Front Physiol 5:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Plotkin LI, Bellido T (2013) Beyond gap junctions: Connexin43 and bone cell signaling. Bone 52(1):157–166

    Article  CAS  PubMed  Google Scholar 

  • Plotkin LI, Bellido T (2016) Osteocytic signalling pathways as therapeutic targets for bone fragility. Nat Rev Endocrinol 12 (10):593–605. doi:nrendo.2016.71 [pii];https://doi.org/10.1038/nrendo.2016.71 [doi]

  • Plotkin LI, Stains JP (2015) Connexins and pannexins in the skeleton: gap junctions, hemichannels and more. Cell Mol Life Sci 72(15):2853–2867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T (1999) Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest 104(10):1363–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plotkin LI, Manolagas SC, Bellido T (2002) Transduction of cell survival signals by connexin-43 hemichannels. J Biol Chem 277(10):8648–8657

    Article  CAS  PubMed  Google Scholar 

  • Plotkin LI, Aguirre JI, Kousteni S, Manolagas SC, Bellido T (2005) Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of ERK activation. J Biol Chem 280(8):7317–7325

    Article  CAS  PubMed  Google Scholar 

  • Plotkin LI, Manolagas SC, Bellido T (2006a) Dissociation of the pro-apoptotic effects of bisphosphonates on osteoclasts from their anti-apoptotic effects on osteoblasts/osteocytes with novel analogs. Bone 39(3):443–452

    Article  CAS  PubMed  Google Scholar 

  • Plotkin LI, Vyas K, Gortazar AR, Manolagas SC, Bellido T (2006b) Barrestin complexes with connexin (cx) 43 and anchors ERKs outside the nucleus: a requirement for the Cx43/ERK-mediated anti-apoptotic effect of bisphosphonates in osteocytes. J Bone Miner Res 21 (Suppl 1):S65

    Google Scholar 

  • Plotkin LI, Lezcano V, Thostenson J, Weinstein RS, Manolagas SC, Bellido T (2008) Connexin 43 is required for the anti-apoptotic effect of bisphosphonates on osteocytes and osteoblasts in vivo. J Bone Miner Res 23(11):1712–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plotkin LI, Bivi N, Bellido T (2011) A bisphosphonate that does not affect osteoclasts prevents osteoblast and osteocyte apoptosis and the loss of bone strength induced by glucocorticoids in mice. Bone 49:122–127

    Article  CAS  PubMed  Google Scholar 

  • Plotkin LI, Speacht TL, Donahue HJ (2015) Cx43 and Mechanotransduction in bone. Curr Osteoporos Rep 13(2):67–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Plotkin LI, Laird DW, Amedee J (2016) Role of connexins and pannexins during ontogeny, regeneration, and pathologies of bone. BMC Cell Biol 17(Suppl 1):29–38

    Google Scholar 

  • Plotkin LI, Davis HM, Cisterna BA, Saez JC (2017) Connexins and Pannexins in bone and skeletal muscle. Curr Osteoporos Rep 15(4):326–334. https://doi.org/10.1007/s11914-017-0374-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Pozzi S, Vallet S, Mukherjee S, Cirstea D, Vaghela N, Santo L, Rosen E, Ikeda H, Okawa Y, Kiziltepe T, Schoonmaker J, Xie W, Hideshima T, Weller E, Bouxsein ML, Munshi NC, Anderson KC, Raje N (2009) High-dose zoledronic acid impacts bone remodeling with effects on osteoblastic lineage and bone mechanical properties. Clin Cancer Res 15(18):5829–5839

    Article  CAS  PubMed  Google Scholar 

  • Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267(5205):1831–1834

    Article  CAS  PubMed  Google Scholar 

  • Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, Spelsberg TC (2000) Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res 60(21):6001–6007

    CAS  PubMed  Google Scholar 

  • Riquelme MA, Cea LA, Vega JL, Boric MP, Monyer H, Bennett MV, Frank M, Willecke K, Saez JC (2013) The ATP required for potentiation of skeletal muscle contraction is released via pannexin hemichannels. Neuropharmacology 75:594–603. doi:S0028-3908(13)00118-4 [pii];https://doi.org/10.1016/j.neuropharm.2013.03.022 [doi]

  • Riquelme MA, Cea LA, Vega JL, Puebla C, Vargas AA, Shoji KF, Subiabre M, Saez JC (2015) Pannexin channels mediate the acquisition of myogenic commitment in C2C12 reserve cells promoted by P2 receptor activation. Front cell dev biol 3:25. Doi:https://doi.org/10.3389/fcell.2015.00025 [doi]

  • Robinson JA, Chatterjee-Kishore M, Yaworsky PJ, Cullen DM, Zhao W, Li C, Kharode Y, Sauter L, Babij P, Brown EL, Hill AA, Akhter MP, Johnson ML, Recker RR, Komm BS, Bex FJ (2006) WNT/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 281(41):31720–31728

    Article  CAS  PubMed  Google Scholar 

  • Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MJ, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido T, Harris SE, Turner CH (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283(9):5866–5875

    Article  CAS  PubMed  Google Scholar 

  • Russell RG, Watts NB, Ebetino FH, Rogers MJ (2008) Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 19(6):733–759. doi:https://doi.org/10.1007/s00198-007-0540-8 [doi]

  • Schalper KA, Palacios-Prado N, Retamal MA, Shoji KF, Martinez AD, Saez JC (2008) Connexin hemichannel composition determines the FGF-1-induced membrane permeability and free [Ca2+]i responses. Mol biol cell 19 (8):3501-3513. Doi:E07-12-1240 [pii];https://doi.org/10.1091/mbc.E07-12-1240 [doi]

  • Schalper KA, Sanchez HA, Lee SC, Altenberg GA, Nathanson MH, Saez JC (2010) Connexin 43 hemichannels mediate the Ca2+ influx induced by extracellular alkalinization. Am J Physiol Cell Physiol 299(6):C1504–C1515. doi:ajpcell.00015.2010 [pii];https://doi.org/10.1152/ajpcell.00015.2010 [doi]

  • Schilling AF, Filke S, Lange T, Gebauer M, Brink S, Baranowsky A, Zustin J, Amling M (2008) Gap junctional communication in human osteoclasts in vitro and in vivo. J Cell Mol Med 12(6A):2497–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seref-Ferlengez Z, Urban-Maldonado M, Sun HB, Schaffler MB, Suadicani SO, Thi MM (2018) Role of pannexin 1 channels in load-induced skeletal response. Ann N Y Acad Sci 1442:79–90. https://doi.org/10.1111/nyas.13914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H, Grimston S, Civitelli R, Thomopoulos S (2014) Deletion of connexin43 in osteoblasts/osteocytes leads to impaired muscle formation in mice. J Bone Miner Res 30(4):596–605

    Article  CAS  Google Scholar 

  • Siller-Jackson AJ, Burra S, Gu S, Xia X, Bonewald LF, Sprague E, Jiang JX (2008) Adaptation of connexin 43-hemichannel prostaglandin release to mechanical loading. J Biol Chem 283(39):26374–26382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosinsky GE, Boassa D, Dermietzel R, Duffy HS, Laird DW, MacVicar B, Naus CC, Penuela S, Scemes E, Spray DC, Thompson RJ, Zhao HB, Dahl G (2011) Pannexin channels are not gap junction hemichannels. Channels (Austin) 5(3):193–197

    Article  CAS  Google Scholar 

  • Stains JP, Civitelli R (2015) Connexins in the skeleton. Semin Cell Dev Biol. doi:S1084-9521(15)30031-8 [pii];https://doi.org/10.1016/j.semcdb.2015.12.017 [doi]

  • Stains JP, Lecanda F, Screen J, Towler DA, Civitelli R (2003) Gap junctional communication modulates gene transcription by altering the recruitment of Sp1 and Sp3 to connexin – response elements in osteoblast promoters. J Biol Chem 278(27):24377–24387

    Article  CAS  PubMed  Google Scholar 

  • Steinberg TH, Civitelli R, Geist ST, Robertson AJ, Hick E, Veenstra RD, Wang HZ, Warlow PM, Westphale EM, Laing JG (1994) Connexin43 and connexin45 form gap junctions with different molecular permeabilities in osteoblastic cells. EMBO J 13(4):744–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thi MM, Urban-Maldonado M, Spray DC, Suadicani SO (2010) Characterization of human telomerase reverse transcriptase (hTERT) immortalized osteoblast cell lines generated from wildtype and connexin43-null mouse calvaria. Am J Physiol Cell Physiol 299(5):C994–C1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thi MM, Islam S, Suadicani SO, Spray DC (2012) Connexin43 and pannexin1 channels in osteoblasts: who is the “hemichannel”? J Membr Biol 245(7):401–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu X, Rhee Y, Condon KW, Bivi N, Allen MR, Dwyer D, Stolina M, Turner CH, Robling AG, Plotkin LI, Bellido T (2012) Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone 50(1):209–217

    Article  CAS  PubMed  Google Scholar 

  • von Maltzahn J, Euwens C, Willecke K, Sohl G (2004) The novel mouse connexin39 gene is expressed in developing striated muscle fibers. J Cell Sci 117 (Pt 22):5381–5392. doi:jcs.01413 [pii];https://doi.org/10.1242/jcs.01413 [doi]

  • Watkins M, Grimston SK, Norris JY, Guillotin B, Shaw A, Beniash E, Civitelli R (2011) Osteoblast Connexin43 modulates skeletal architecture by regulating both arms of bone remodeling. Mol Biol Cell 22(8):1240–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watkins MP, Norris JY, Grimston SK, Zhang X, Phipps RJ, Ebetino FH, Civitelli R (2012) Bisphosphonates improve trabecular bone mass and normalize cortical thickness in ovariectomized, osteoblast connexin43 deficient mice. Bone 51(4):787–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinger JM, Holtrop ME (1974) An ultrastructural study of bone cells: the occurrence of microtubules, microfilaments and tight junctions. Calcif Tissue Res 14(1):15–29

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Camalier CE, Nagashima K, Chan KC, Lucas DA, de la Cruz MJ, Gignac M, Lockett S, Issaq HJ, Veenstra TD, Conrads TP, Beck GR Jr (2007) Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts. J Cell Physiol 210(2):325–335

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Ando F, Shimokata H (2007) Association of candidate gene polymorphisms with bone mineral density in community-dwelling Japanese women and men. Int J Mol Med 19(5):791–801

    CAS  PubMed  Google Scholar 

  • Yellowley CE, Li Z, Zhou Z, Jacobs CR, Donahue HJ (2000) Functional gap junctions between osteocytic and osteoblastic cells. J Bone Miner Res 15(2):209–217

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Paul EM, Sathyendra V, Davidson A, Bronson S, Srinivasan S, Gross TS, Donahue HJ (2011) Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone. PLoS One 6(8):e23516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziambaras K, Lecanda F, Steinberg TH, Civitelli R (1998) Cyclic stretch enhances gap junctional communication between osteoblastic cells. J Bone Min Res 13(2):218–228

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilian I. Plotkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Plotkin, L.I., Davis, H.M. (2019). Role of Connexins and Pannexins in Bone and Muscle Mass and Function. In: Duque, G. (eds) Osteosarcopenia: Bone, Muscle and Fat Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-25890-0_5

Download citation

Publish with us

Policies and ethics