Advertisement

Population Dynamics of Browsing and Grazing Ungulates in the Anthropocene

  • Christian KiffnerEmail author
  • Derek E. Lee
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 239)

Abstract

In this Chapter, we describe patterns of ungulate population dynamics, intrinsic and extrinsic causal factors underlying population growth, and consequences of variation in these causal factors in the face of anthropogenic change. We group ungulates as grazers and browsers, and review how each main functional feeding group copes with spatial and temporal variability of forage availability. Densities of browsers and grazers are highly variable in space and time, with the highest densities (top 10%) realized within specific body mass ranges. Among browsers, highest densities are usually found in smaller-bodied species (range: 20–233 kg, median: 45 kg), whereas highest densities for grazers are realized in larger species and within a wider body mass range (17–325 kg, median: 137.5 kg). A literature review of demographic processes (births, deaths, and movements) governing population dynamics suggests that direct effects of environmental variation on demographic rates, cohort effects, and indirect effects of perturbations on the age structure, all influence population growth rates. Additionally, the role of direct versus indirect effects can depend on life history strategies. Which specific demographic processes are most important to population growth rate are largely context dependent. Population growth rates of browsing and grazing ungulates are strongly influenced by environmental variation, with primary productivity—which varies strongly in space and time—the fundamental factor influencing the carrying capacity of a given area. Competition, direct and indirect effects of predation, and diseases can lower population densities below their resource-determined potential. Resource availability, predation, diseases, and perturbations of the environment (e.g. drought, fire, and land use change) interact synergistically in their regulation of herbivore populations to create indirect-, additive-, reciprocal-, and interaction-modifying relationships. In particular, human-caused perturbations (land use and climate change, introduction of livestock, and direct exploitation) may directly or indirectly affect both “bottom up” and “top down” regulation. A qualitative threat review indicates that obligate grazers in sub-tropical regions may be particularly threatened given the scale and diversity of anthropogenic perturbations projected to be influential.

Notes

Acknowledgments

We thank Herbert Prins and Iain Gordon for the invitation to write this Chapter and for very constructive feedback on this Chapter. We thank Monica Bond for constructive discussions and comments.

References

  1. Albon SD, Coulson TN, Brown D, Guinness FE, Pemberton JM, Clutton-Brock TH (2000) Temporal changes in key factors and key age groups influencing the population dynamics of female red deer. J Anim Ecol 69(6):1099–1110CrossRefGoogle Scholar
  2. Arsenault R, Owen-Smith N (2002) Facilitation versus competition in grazing herbivore assemblages. Oikos 97(3):313–318CrossRefGoogle Scholar
  3. Bartsch A, Kumpula T, Forbes BC, Stammler F (2010) Detection of snow surface thawing and refreezing in the Eurasian Arctic with QuikSCAT: implications for reindeer herding. Ecol Appl 20(8):2346–2358CrossRefGoogle Scholar
  4. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15(4):365–377CrossRefPubMedPubMedCentralGoogle Scholar
  5. Blackburn TM, Gaston KJ (1999) The relationship between animal abundance and body size: a review of the mechanisms. Adv Ecol Res 28:181–210CrossRefGoogle Scholar
  6. Blackburn TM, Brown VK, Doube BM, Greenwood JD, Lawton JH, Stork N (1994) The relationship between abundance and body size in natural animal assemblages. J Anim Ecol 62:519–528CrossRefGoogle Scholar
  7. Bolger DT, Newmark WD, Morrison TA, Doak DF (2008) The need for integrative approaches to understand and conserve migratory ungulates. Ecol Lett 11(1):63–77PubMedPubMedCentralGoogle Scholar
  8. Bond WJ, Midgley GF (2000) A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob Change Biol 6:865–869CrossRefGoogle Scholar
  9. Bond WJ, Woodward FI, Midgley GF (2004) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538CrossRefGoogle Scholar
  10. Bonenfant C et al (2009) Emprirical evidence of density-dependence in populations of large herbivores. Adv Ecol Res 41:313–357CrossRefGoogle Scholar
  11. Bourbeau-Lemieux A, Festa-Bianchet M, Gaillard J-M, Pelletier F (2011) Predator-driven component Allee effects in a wild ungulate. Ecol Lett 14:358–363CrossRefGoogle Scholar
  12. Boyce MS, Haridas CV, Lee CT, The NCEAS Stochastic Demography Working Group (2006) Demography in an increasingly variable world. Trends Ecol Evol 21:141–148CrossRefGoogle Scholar
  13. Burbaitė L, Csányi S (2009) Roe deer population and harvest changes in Europe. Est J Ecol 58(3):169–180CrossRefGoogle Scholar
  14. Burgman M, Ferson S, Akçakaya HR (1993) Risk assessment in conservation biology. Chapman and Hall, LondonGoogle Scholar
  15. Buuveibaatar B et al (2016) Human activities negatively impact distribution of ungulates in the Mongolian Gobi. Biol Conserv 203:168–175CrossRefGoogle Scholar
  16. Caughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244Google Scholar
  17. Chaneton EJ, Bonsall M (2000) Enemy-mediated apparent competition: empirical patterns and the evidence. Oikos 88:380–394CrossRefGoogle Scholar
  18. Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22(7):357–365CrossRefGoogle Scholar
  19. Clutton-Brock TH, Coulson T (2002) Comparative ungulate dynamics: the devil is in the detail. Philos Trans R Soc B 35:1285–1298CrossRefGoogle Scholar
  20. Coe MJ, Cumming DH, Phillipson J (1976) Biomass and production of large African herbivores in relation to rainfall and primary production. Oecologia 22(4):341–354CrossRefGoogle Scholar
  21. Collins MM, Milner-Gulland EJJ, Macdonald EAA, Macdonald DWW (2011) Pleiotropy and charisma determine winners and losers in the REDD+ game: all biodiversity is not equal. Trop Conserv Sci 4(3):261–266CrossRefGoogle Scholar
  22. Côté SD, Rooney TP, Tremblay J-P, Dussault C, Waller DM (2004) Ecological impacts of deer overabundance. Annu Rev Ecol Evol Syst 35:113–147CrossRefGoogle Scholar
  23. Coulson T, Gaillard J-M, Festa-Bianchet M (2005) Decomposing the variation in population growth into contributions from multiple demographic rates. J Anim Ecol 74:789–801CrossRefGoogle Scholar
  24. Coulson T, Tuljapurkar S, Childs DZ (2010) Using evolutionary demography to link life-history, quantitative genetics and population ecology. J Anim Ecol 79(6):1226–1240CrossRefPubMedPubMedCentralGoogle Scholar
  25. Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trends Ecol Evol 14(10):406–410CrossRefGoogle Scholar
  26. Creel S, Christianson D, Liley S, Winnie JA Jr (2007) Predation risk affects reproductive physiology and demography of elk. Science 315:960CrossRefGoogle Scholar
  27. Damuth J (1981) Population-density and body size in mammals. Nature 290:699–700CrossRefGoogle Scholar
  28. de Boer WF, Prins HHT (1990) Large herbivores that strive mightily but eat and drink as friends. Oecologia 82:264–274CrossRefGoogle Scholar
  29. de Waal C et al (2011) Scale of nutrient patchiness mediates resource partitioning between trees and grasses in a semi-arid savanna. J Ecol 99:1124–1133CrossRefGoogle Scholar
  30. Devine AP, McDonald RA, Quaife T, Maclean IMD (2017) Determinants of woody encroachment and cover in African savannas. Oecologia 183:939–951CrossRefPubMedPubMedCentralGoogle Scholar
  31. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science 345(6195):401–406CrossRefGoogle Scholar
  32. Duncan C, Chauvenet ALM, McRae LM, Pettorelli N (2012) Predicting the future impact of droughts on ungulate populations in arid and semi-arid environments. PLoS One 7(12):e51490CrossRefPubMedPubMedCentralGoogle Scholar
  33. East R (1984) Rainfall, soil nutrient status and biomass of large African savanna mammals. Afr J Ecol 22(4):245–270CrossRefGoogle Scholar
  34. Estes JA, Brashares JS, Power ME (2013) Predicting and detecting reciprocity between indirect ecological interactions and evolution. Am Nat 181:S76–S99CrossRefGoogle Scholar
  35. Fritz H, Duncan P (1994) On the carrying capacity for large ungulates of African savanna ecosystems. Proc R Soc B 256:77–82CrossRefGoogle Scholar
  36. Fryxell JM, Wilmshurst JF, Sinclair ARE, Haydon DT, Holt RD, Abrams PA (2005) Landscape scale, heterogeneity, and the viability of Serengeti grazers. Ecol Lett 8(3):328–335CrossRefGoogle Scholar
  37. Gagnon M, Chew AE (2000) Dietary preferences in extant African Bovidae. J Mammal 81:490–511CrossRefGoogle Scholar
  38. Gaillard J-M, Festa-Bianchet M, Yoccoz NG (1998) Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends Ecol Evol 13(2):58–63CrossRefGoogle Scholar
  39. Gaillard J-M, Festa-Bianchet M, Yoccoz NG, Loison A, Toïgo C (2000) Temporal variation in fitness components and population dynamics of large herbivores. Annu Rev Ecol Syst 31:367–393CrossRefGoogle Scholar
  40. Gamelon M, Gimenez O, Baubet E, Coulson T, Tuljapurkar S, Gaillard J-M (2014) Influence of life-history tactics on transient dynamics: a comparative analysis across mammalian populations. Am Nat 184:673–683CrossRefPubMedPubMedCentralGoogle Scholar
  41. Gamelon M, Gaillard J-M, Gimenez O, Coulson T, Tuljapurkar S, Baubet E (2016) Linking demographic responses and life-history from longitudinal data in mammals. Oikos 125(3):395–404CrossRefGoogle Scholar
  42. Gamelon M, Foccardi S, Baubet E, Brandt S, Franzetti B, Rochni F, Venner S, Sæther B-E, Gaillard J-M (2017) Reproductive allocation in pulsed resource environments: a comparative study in two populations of wild boar. Oecologia 183(4):1065–1076CrossRefGoogle Scholar
  43. Gaynor KM, Hojnowski CE, Carter NH, Brashares JS (2018) The influence of human disturbance on wildlife nocturnality. Science 360(6394):1232–1235CrossRefGoogle Scholar
  44. Gerland P et al (2014) World population stabilization unlikely this century. Science 346:234–237CrossRefPubMedPubMedCentralGoogle Scholar
  45. Gilpin ME, Hanski I (1991) Metapopulation dynamics: empirical and theoretical investigations. Linnaean Society of London and Academic Press, LondonGoogle Scholar
  46. Goheen JR et al (2018) Conservation lessons from large-mammal manipulations in East African savannas: the KLEE, UHURU, and GLADE experiments. Ann N Y Acad Sci 1429(1):31–49CrossRefGoogle Scholar
  47. Goodman D (1987) The demography of chance extinction. In: Soulé ME (ed) Viable populations for conservation. Cambridge University Press, Cambridge, pp 11–34CrossRefGoogle Scholar
  48. Gordon IJ (2018) Review: Livestock production increasingly influences wildlife across the globe. Animal 12(S2):s372–s382CrossRefPubMedPubMedCentralGoogle Scholar
  49. Gordon IJ, Prins HHT (2008) Grazers and browsers in a changing world: conclusions. In: Gordon IJ, Prins HHT (eds) The ecology of browsing and grazing. Ecological studies, vol 195. Springer, Berlin, pp 309–321Google Scholar
  50. Hagen R, Heurich M, Storch I, Hanewinkel M, Kramer-Schadt S (2017) Linking annual variations of roe deer bag records to large-scale winter conditions: spatio-temporal development in Europe between 1961 and 2013. Eur J Wildl Res 63:97CrossRefGoogle Scholar
  51. Hamel S, Gaillard J, Festa-Bianchet M, Côté S (2009) Individual quality, early-life conditions, and reproductive success in contrasted populations of large herbivores. Ecology 90:1981–1995CrossRefGoogle Scholar
  52. Hansen MC et al (2013) High resolution global maps of 21st-century forest cover change. Science 342(6160):850–853CrossRefPubMedPubMedCentralGoogle Scholar
  53. Haridas CV, Tuljapurkar S, Coulson T (2009) Estimating stochastic elasticities directly from longitudinal data. Ecol Lett 12(8):806–812CrossRefGoogle Scholar
  54. Hempson GP, Illius AW, Hendricks HH, Bond WJ, Vetter S (2015) Herbivore population regulation and resource heterogeneity in a stochastic environment. Ecology 96(8):2170–2180CrossRefGoogle Scholar
  55. Hempson GP, Archibald S, Bond WJ (2017) The consequences of replacing wildlife with livestock in Africa. Sci Rep 7:17196CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hess GR (1996) Linking extinction to connectivity and habitat destruction in metapopulation models. Am Nat 148:226–236CrossRefGoogle Scholar
  57. Hobbs NT, Gordon IJ (2010) How does landscape heterogeneity shape dynamics of large herbivore populations? In: Owen-Smith N (ed) Dynamics of large herbivore populations in changing environments. Wiley-Blackwell, Hoboken, NJ, pp 141–164CrossRefGoogle Scholar
  58. Hofmann RR, Stewart DRM (1972) Grazer or browser: a classification based on the stomach-structure and feeding habits of East African ruminants. Mammalia 36(2):226–240CrossRefGoogle Scholar
  59. Holdo R et al (2009) A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLoS Biol 7(9):e1000210CrossRefPubMedPubMedCentralGoogle Scholar
  60. Hopcraft JGC, Olff H, Sinclair ARE (2010) Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas. Trends Ecol Evol 25(2):119–128CrossRefGoogle Scholar
  61. Hopcraft JGC, Holdo RM, Mwangomo E, Mduma SAR, Thirgood SJ, Borner M, Fryxell JM, Olff H, Sinclair ARE (2015) Why are wildebeest the most abundant herbivore in the Serengeti ecosystem? In: Sinclair ARE, Metzger KL, Mduma SAR, Fryxell JM (eds) Serengeti IV: sustaining biodiversity in a coupled human-natural system. The University of Chicago Press, Chicago, pp 125–174Google Scholar
  62. Illius AW, O’Connor TG (1999) On the relevance of nonequilibrium concepts to arid and semiarid grazing systems. Ecol Appl 9:798–813CrossRefGoogle Scholar
  63. Jackson T, Sax DF (2010) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25(3):153–160CrossRefGoogle Scholar
  64. Jacobson AR, Provenzale A, Hardenberg A, Bassano B, Festa-Bianchet M (2004) Climate forcing and density dependence in a mountain ungulate population. Ecology 85(6):1598–1610CrossRefGoogle Scholar
  65. Jędrzejewska B, Jędrzejewski W, Bunevich AN, Miikowski L, Krasiński ZA (1997) Factors shaping population densities and increase rates of ungulates in Bialowieża primeval forest (Poland and Belarus) in the 19th and 20th centuries. Acta Theriol 42(4):399–451CrossRefGoogle Scholar
  66. Jenouvrier S, Holland M, Stroeve J, Serreze M, Barbraud C, Weimerskirch H, Caswell H (2014) Projected continent wide declines of the emperor penguin under climate change. Nat Clim Chang 4:715–718CrossRefGoogle Scholar
  67. Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65–71CrossRefGoogle Scholar
  68. Johnson HE, Mills LS, Stephenson TR, Wehausen JD (2010) Population-specific vital rates contributions influence management of an endangered ungulate. Ecol Appl 20(6):1753–1765CrossRefGoogle Scholar
  69. Keesing F et al (2018) Consequences of integrating livestock and wildlife in an African savanna. Nat Sust 1:566–573CrossRefGoogle Scholar
  70. Kery M, Schaub M (2012) Bayesian population analysis using WinBUGS: a hierarchical perspective. Academic, Boston, MAGoogle Scholar
  71. Kiffner C, Nagar S, Kollmar C, Kioko J (2016) Wildlife species richness and densities in wildlife corridors of Northern Tanzania. J Nat Conserv 34:82–92CrossRefGoogle Scholar
  72. Kiffner C, Rheault H, Miller E, Scheetz T, Enriquez V, Swafford R, Kioko J, Prins HHT (2017) Long-term population dynamics in a multi-species assemblage of large herbivores in East Africa. Ecosphere 8(12):e02027CrossRefGoogle Scholar
  73. Kock RA et al (2018) Saigas on the brink: multidisciplinary analysis of the factors influencing mass mortality events. Sci Adv 4:eaao2314CrossRefPubMedPubMedCentralGoogle Scholar
  74. Koons DN, Iles DT, Schaub M, Caswell H (2016) A life history perspective on the demographic drivers of structured population dynamics in changing environments. Ecol Lett 19:1023–1031CrossRefGoogle Scholar
  75. Koons DN, Arnold TW, Schaub M (2017) Understanding the demographic drivers of realized population growth rates. Ecol Appl 27(7):2102–2115CrossRefGoogle Scholar
  76. Kuemmerle T et al (2011) Cost-effectiveness of strategies to establish a European bison metapopulation in the Carpathians. J Appl Ecol 48(2):317–329CrossRefGoogle Scholar
  77. Lack D (1966) Population studies of birds. Oxford University Press, OxfordGoogle Scholar
  78. LaManna JA, Martin TE (2016) Costs of fear: behavioral and life-history responses to risk and their demographic consequences vary across species. Ecol Lett 19:403–413CrossRefGoogle Scholar
  79. Langevelde F et al (2003) Effects of fire and herbivory on the stability of savanna ecosystems. Ecology 84(2):337–350CrossRefGoogle Scholar
  80. Lee DE (2018) Evaluating conservation effectiveness in a Tanzanian community wildlife management area. J Wildl Manag 82(8):1767–1774CrossRefGoogle Scholar
  81. Lee DE, Bolger DT (2017) Movements and source-sink dynamics among subpopulations of giraffe. Popul Ecol 59:157–168CrossRefGoogle Scholar
  82. Lee DE, Bond ML, Kissui BM, Kiwango YA, Bolger DT (2016a) Spatial variation in giraffe demography: a test of 2 paradigms. J Mammal 97:1015–1025CrossRefGoogle Scholar
  83. Lee DE, Kissui BM, Kiwango YA, Bond ML (2016b) Migratory herds of wildebeests and zebras indirectly affect calf survival of giraffes. Ecol Evol 6(23):8402–8411CrossRefPubMedPubMedCentralGoogle Scholar
  84. Lehman CP, Rota CT, Raithel JD, Millspaugh JJ (2018) Pumas affect elk dynamics in absence of other large carnivores. J Wildl Manag 82(2):344–353CrossRefGoogle Scholar
  85. Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240Google Scholar
  86. Lindsey PA et al (2013) The bushmeat trade in African savannas: impacts, drivers, and possible solutions. Biol Conserv 160:80–96CrossRefGoogle Scholar
  87. Loison A, Langvatn R, Solberg EJ (1999) Body mass and winter mortality in red deer calves: disentangling sex and climate effects. Ecography 22(1):20–30CrossRefGoogle Scholar
  88. Maldonado-Chaparro AA, Blumstein DT, Armitage KB, Childs DZ (2018) Transient LTRE analysis reveals the demographic and trait-mediated processes that buffer population growth. Ecol Lett 21:1693–1703CrossRefGoogle Scholar
  89. Massei G et al (2015) Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag Sci 71(4):492–500CrossRefGoogle Scholar
  90. Matthysen E (2005) Density-dependent dispersal in birds and mammals. Ecography 28(3):403–416CrossRefGoogle Scholar
  91. Meissner HH, Pieterse E, Potgieter JHJ (1996) Seasonal food selection and intake by male impala Aepyceros melampus in two habitats. S Afr J Wildl Res 26(2):56–63Google Scholar
  92. Melis C et al (2009) Predation has a greater impact in less productive environments: variation in roe deer, Capreolus capreolus, population density across Europe. Glob Ecol Biogeogr 18(6):724–734CrossRefGoogle Scholar
  93. Merkle JA et al (2016) Large herbivores surf waves of green-up during spring. Proc R Soc B 283:20160456CrossRefGoogle Scholar
  94. Milner JM, Nilsen EB, Andreassen HP (2006) Demographic side effects of selective hunting in ungulates and carnivores. Conserv Biol 21(1):36–47CrossRefGoogle Scholar
  95. Morris WF, Doak DF (2002) Quantitative conservation biology. Sinauer Associates, Sunderland, MAGoogle Scholar
  96. Morrison TA, Holdo RM, Anderson TM (2016a) Elephant damage, not fire or rainfall, explains mortality of overstorey trees in Serengeti. J Ecol 104(2):409–418CrossRefGoogle Scholar
  97. Morrison TA, Link WA, Newmark WD, Foley CAH, Bolger DT (2016b) Tarangire revisited: consequences of declining connectivity in a tropical ungulate population. Biol Conserv 197:53–60CrossRefGoogle Scholar
  98. Morrison TA, Holdo RM, Rugemalila DM, Nzunda M, Anderson TM (2018) Grass competition overwhelms effects of herbivores and precipitation on early tree establishment in Serengeti. J Ecol.  https://doi.org/10.1111/1365-2745.13010
  99. Müller DWH et al (2013) Assessing the Jarman – Bell principle: scaling of intake, digestibility, retention time and gut fill with body mass in mammalian herbivores. Comp Biochem Physiol A 164:129–140CrossRefGoogle Scholar
  100. Murphy BP, Bowman DMJS (2012) What controls the distribution of tropical forest and savanna? Ecol Lett 15:748–758CrossRefGoogle Scholar
  101. Norby RJ et al (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci U S A 102(50):18052–18056CrossRefPubMedPubMedCentralGoogle Scholar
  102. O’Connor TG, Haines LM, Snyman HA (2001) Influence of precipitation and species composition on phytomass of a semi-arid grassland. J Ecol 89:850–860CrossRefGoogle Scholar
  103. Odadi WO, Karachi MK, Abdulrazak SA, Young TP (2011a) African wild ungulates compete with or facilitate cattle depending on season. Science 333:1753–1755CrossRefPubMedPubMedCentralGoogle Scholar
  104. Odadi WO, Jain M, van Wieren SE, Prins HHT, Rubenstein DI (2011b) Facilitation between Bovids and Equids in an African Savanna. Evol Ecol Res 13:237–252Google Scholar
  105. Ogutu JO, Owen-Smith N (2003) ENSO, rainfall and temperature influences on extreme population declines among African savanna ungulates. Ecol Lett 6(5):412–419CrossRefGoogle Scholar
  106. Ogutu JO, Piepho H-P, Dublin HT, Bhola N, Reid RS (2008) El Niño-Southern Oscillation, rainfall, temperature, and Normalized Difference Vegetation Index fluctuations in the Mara-Serengeti ecosystem. Afr J Ecol 46(2):132–143CrossRefGoogle Scholar
  107. Olff H, Ritchie ME, Prins HHT (2002) Global environmental controls of diversity in large herbivores. Nature 415:901–904PubMedPubMedCentralGoogle Scholar
  108. Olson KA et al (2011) Death by a thousand huts? Effects of household presence on density and distribution of Mongolian gazelles. Conserv Lett 4(4):304–312CrossRefGoogle Scholar
  109. Olson KA et al (2014) Survival probabilities of adult Mongolian gazelles. J Wildl Manag 78(1):35–41CrossRefGoogle Scholar
  110. Owen-Smith N (1990) Demography of a large herbivore, the greater kudu Tragelaphus strepsiceros, in relation to rainfall. J Anim Ecol 59:893–913CrossRefGoogle Scholar
  111. Owen-Smith N (2004) Functional heterogeneity in resources within landscapes and herbivore population dynamics. Landsc Ecol 19:761–771CrossRefGoogle Scholar
  112. Owen-Smith N (2008) The comparative population dynamics of browsing and grazing ungulates. In: Gordon IJ, Prins HHT (eds) The ecology of browsing and grazing. Springer, Berlin, pp 149–177CrossRefGoogle Scholar
  113. Owen-Smith N, Mason DR (2005) Comparative changes in adult vs. juvenile affecting population trends of African ungulates. J Anim Ecol 74:762–773CrossRefGoogle Scholar
  114. Parker KL, Barboza PS, Gillingham MP (2009) Nutrition integrates environmental responses of ungulates. Funct Ecol 23:57–69CrossRefGoogle Scholar
  115. Peers MJ, Majchrzak YN, Neilson E, Lamb CT, Hämäläinen A, Haines JA, Garland L, Doran-Myers D, Broadley K, Boonstra R, Boutin S (2018) Quantifying fear effects on prey demography in nature. Ecology 99(8):1716–1723CrossRefGoogle Scholar
  116. Pellew RA (1983) The giraffe and its food resource in the Serengeti. I. Composition, biomass and production of available browse. Afr J Ecol 21:241–267CrossRefGoogle Scholar
  117. Perreira HM, Navaro LM (2015) Rewilding European landscapes. Springer, HeidelbergCrossRefGoogle Scholar
  118. Peters RH (1983) The ecological implications of body size. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  119. Pettorelli N, Bro-Jørgensen J, Durant SM, Blackburn T, Carbone C (2009) Energy availability and density estimates in African ungulates. Am Nat 173(5):698–704CrossRefGoogle Scholar
  120. Post E, Stenseth NC (1999) Climatic variability, plant phenology, and northern ungulates. Ecology 80:1322–1339CrossRefGoogle Scholar
  121. Prins HHT (1988) Plant phenology patterns in Lake Manyara National Park, Tanzania. J Biogeogr 15:465–480CrossRefGoogle Scholar
  122. Prins HHT (1992) The pastoral road to extinction: competition between wildlife and traditional pastoralism in East Africa. Environ Conserv 19:117–123CrossRefGoogle Scholar
  123. Prins HHT, Gordon IJ (2008) Introduction: grazers and browsers in a changing world. In: Gordon I, Prins HHT (eds) The ecology of browsing and grazing. Ecological studies, vol 195. Springer, Berlin, pp 1–20Google Scholar
  124. R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org Google Scholar
  125. Ramirez JI, Jansen PA, Poorter L (2018) Effects of wild ungulates on the regeneration, structure and functioning of temperate forests: a semi-quantitative review. For Ecol Manag 424:406–419CrossRefGoogle Scholar
  126. Ratnam J, Bond WJ, Fensham RJ, Hoffmann WA, Archibald S, Lehman CER, Anderson MT, Higgins SI, Sankaran M (2011) When is a ‘forest’ a savanna, and why does it matter? Glob Ecol Biogeogr 20:653–660CrossRefGoogle Scholar
  127. Richard E, Gaillard JM, Saïd S, Hamann JL, Klein F (2010) High red deer density depresses body mass of roe deer fawns. Oecologia 163(1):91–97CrossRefGoogle Scholar
  128. Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT, Galetti M, Hayward MW, Kerley GIH, Levi T, Lindsey PA, MacDonald DW, Malhi Y, Painter LE, Sandom CJ, Terborgh J, Van Valkenburgh B (2015) Collapse of the world’s largest herbivores. Sci Adv 1:e1400103CrossRefPubMedPubMedCentralGoogle Scholar
  129. Ripple W, Wolf C, Newsome TM, Hoffmann M, Wirsing AJ, McCauley DJ (2017) Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc Natl Acad Sci U S A 114(40):10678–10683CrossRefPubMedPubMedCentralGoogle Scholar
  130. Robbins CT (1993) Wildlife feeding and nutrition. Academic, New YorkGoogle Scholar
  131. Roques KG, O’Connor TG, Watkinson AR (2001) Dynamics of shrub encroachment in an African savanna. Relative influences of fire, herbivory, rainfall and density dependence. J Appl Ecol 38(2):268–180CrossRefGoogle Scholar
  132. Rutherford MC (1984) Relative allocation and seasonal phasing of growth of woody plant components in a South African savanna. Prog Biometerol 3:200–221Google Scholar
  133. Sala OE et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefGoogle Scholar
  134. Sankaran M et al (2005) Determinants of woody cover in African savannas. Nature 438(8):846–849CrossRefGoogle Scholar
  135. Seeber P, Ndlovu HT, Duncan P, Ganswindt A (2012) Grazing behavior of the giraffe in Hwange National Park, Zimbabwe. Afr J Ecol 50(2):247–250CrossRefGoogle Scholar
  136. Silva M, Brimacombe M, Downing JA (2001) Effects of body mass, climate, geography, and census area on population density of terrestrial mammals. Glob Ecol Biogeogr 10:469–485CrossRefGoogle Scholar
  137. Sinclair ARE (1977) The African buffalo: a study of resource limitation of populations. University of Chicago Press, ChicagoGoogle Scholar
  138. Sinclair ARE (1979) The eruption of the ruminants. In: Sinclair ARE, Norton-Griffiths M (eds) Serengeti: dynamics of an ecosystem. Chicago University Press, Chicago, pp 82–103Google Scholar
  139. Sinclair ARE (2003) Mammal population regulation, keystone processes and ecosystem dynamics. Philos Trans R Soc B 358:1729–1240CrossRefGoogle Scholar
  140. Sinclair ARE et al (2018) Predicting and assessing progress in the restoration of ecosystems. Conserv Lett 11(2):e12390CrossRefGoogle Scholar
  141. Sinclair ARE, Krebs CJ (2002) Complex numerical responses to top-down and bottom-up processes in vertebrate populations. Philos Trans R Soc B 357:1221–1231CrossRefGoogle Scholar
  142. Sinclair ARE, Norton-Griffiths M (1982) Does competition or facilitation regulate migrant ungulate populations in the Serengeti? A test of hypotheses. Oecologia 53(3):364–369CrossRefGoogle Scholar
  143. Smit IPJ, Archibald S (2019) Herbivore culling influences spatio-temporal patterns of fire in a semi-arid savanna. J Appl Ecol 56(3):711–721.  https://doi.org/10.1111/1365-2664.13312 CrossRefGoogle Scholar
  144. Smit IPJ, Prins HHT (2015) Predicting the effects of woody encroachment on mammal communities, grazing biomass and fire frequency in African savannas. PLoS One 10(9):e0137857CrossRefPubMedPubMedCentralGoogle Scholar
  145. Spear D, Chown SL (2009) Non-indigenous ungulates as a threat to biodiversity. J Zool 279(1):1–17CrossRefGoogle Scholar
  146. Staver AC, Archibald S, Levin SA (2011) The global extent and determinants of savanna and forest as alternative biome states. Science 334:230–232CrossRefGoogle Scholar
  147. Teitelbaum CS et al (2015) How far to go? Determinants of migration distance in land mammals. Ecol Lett 18(6):545–552CrossRefGoogle Scholar
  148. Tucker MA et al (2018) Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359(6375):466–469CrossRefGoogle Scholar
  149. Tuljapurkar S (1982) Population dynamics in variable environments. III evolutionary dynamics of r-selection. Theor Popul Biol 21:141–165CrossRefGoogle Scholar
  150. van Beest FM, Mysterud A, Loe LE, Milner JM (2010) Forage quantity, quality and depletion as scale-dependent mechanisms driving habitat selection of a large browsing herbivore. J Anim Ecol 79(4):910–922PubMedGoogle Scholar
  151. van de Koppel J et al (2002) Spatial heterogeneity and irreversible vegetation change in semiarid grazing systems. Am Nat 159(2):209–218CrossRefGoogle Scholar
  152. Verheyden-Tixier H, Renaud P-C, Morellet N, Jamot J, Besle J-M, Dumont B (2008) Selection for nutrients by red deer hinds feeding on a mixed forest edge. Oecologia 156:715–726CrossRefGoogle Scholar
  153. Waltert M, Meyer B, Kiffner C (2009) Habitat availability, hunting or poaching: what affects distribution and density of large mammals in western Tanzanian woodlands? Afr J Ecol 47:737–746CrossRefGoogle Scholar
  154. Wang G et al (2006) Spatial and temporal variability modify density dependence in populations of large herbivores. Ecology 87(1):95–102CrossRefGoogle Scholar
  155. Wang G et al (2009) Density dependence in northern ungulates: interactions with predation and resources. Popul Ecol 51(1):123CrossRefGoogle Scholar
  156. Wegge P, Storaas T (2009) Sampling tiger ungulate prey by the distance method: lessons learned in Bardia National Park, Nepal. Anim Conserv 12:78–84CrossRefGoogle Scholar
  157. Wegge P, Shresta AK, Moe SR (2006) Dry season diets of sympatric ungulates in lowland Nepal: competition and facilitation in alluvial tall grasslands. Ecol Res 21:698–706CrossRefGoogle Scholar
  158. White EP, Ernest SKM, Kerkoff AJ, Enquist BJ (2007) Relationships between body size and abundance in ecology. Trends Ecol Evol 22:323–330CrossRefGoogle Scholar
  159. Wilkie DS, Bennett EL, Peres CA, Cunningham AA (2011) The empty forest revisited. Ann N Y Acad Sci 1223:120–128CrossRefGoogle Scholar
  160. Wisdom MJ, Mills LS, Doak DF (2000) Life stage simulation analysis: estimating vital rate effects on population growth for conservation. Ecology 81:628–641CrossRefGoogle Scholar
  161. Wittmer HU, Sinclair ARE, McLellan BN (2005) The role of predation in the decline and extirpation of woodland caribou. Oecologia 144:257–267CrossRefGoogle Scholar
  162. Wood SN, Pya N, Saefken B (2016) Smoothing parameter and model selection for general smooth models (with discussion). J Am Stat Assoc 111:1548–1575CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Wildlife Management StudiesThe School for Field StudiesKaratuTanzania
  2. 2.Wild Nature InstituteConcordUSA
  3. 3.Department of BiologyPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations