Skip to main content

Ultrafast Plasma Imaging

  • Conference paper
  • First Online:
Laser-Driven Sources of High Energy Particles and Radiation

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 231))

  • 753 Accesses

Abstract

This paper gives an overview of high-resolution diagnostic techniques, which can be used for ultrafast plasma imaging. Various effects in the plasma are exploited to realize diagnostics sensitive to density distributions (via interferometry) or small-scale internal plasma structures (shadowgraphy). Furthermore, magnetic field distributions, which are linked to the formation of a relativistic particle pulse, can be detected using polarimetry. After a short description of these effects possible experimental configurations are discussed and exemplary experimental results are presented, which highlight the great potential of such diagnostics for giving us high-resolution insights into laser-based particle accelerators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the local plasma frequency may become space and time dependent through the respective variation of \(n_\mathrm{e}\). Furthermore, once the plasma electrons start to move with relativistic speeds, e.g. through the interaction with a high-intensity laser pulse, relativistic corrections to the electron mass need to be taken into account, too.

  2. 2.

    Note that the Faraday-effect also occurs in transparent media, which have a non-vanishing Verdet-constant.

  3. 3.

    Note that both approaches have their pros and cons: Using a partially transmissive beam-line mirror does not affect the driver beam profile, but the passage of the light through the mirror introduces spectral dispersion, which needs to be compensated. This becomes more and more challenging the broader the driver pulse’s spectrum is. This can be avoided by using a pick-up mirror in the beam line (or by using a beam-line mirror with a small hole in the center). While this leads to an undisturbed probe pulse, it, however, likely leads to diffraction effects, which may affect the driver beam’s profile.

  4. 4.

    One should note, however, that any deviations from this cylindrical symmetry cannot be resolved with the simplest approach of an Avel inversion, which inherently assumes this symmetry. Such asymmetries can—for example—be caused by a non-symmetric focus or—when using a gas jet for producing an underdense plasma—a non-symmetric gas nozzle. For various applications, a non-symmetric density distribution may even be advantageous. For more accurate results, which can resolve also non-symmetric density disrtibutions, tomographic techniques would be required [1, 20].

References

  1. A. Adelmann, B. Hermann, R. Ischebeck, M. Kaluza, U. Locans, N. Sauerwein, R. Tarkeshian, Real-time tomography of gas-jets with a Wollaston interferometer. Appl. Sci. 8(3), 443 (2018)

    Article  Google Scholar 

  2. D. Adolph, M. Möller, J. Bierbach, M.B. Schwab, A. Sävert, M. Yeung, A.M. Sayler, M. Zepf, M.C. Kaluza, G.G. Paulus, Real-time, single-shot, carrier-envelope-phase measurement of a multi-terawatt laser. Appl. Phys. Lett. 110(8), 081105 (2017)

    Article  ADS  Google Scholar 

  3. R. Benattar, C. Popovics, R. Sigel, Polarized light interferometer for laser fusion studies. Rev. Sci. Instrum. 50(12), 1583–1586 (1979)

    Article  ADS  Google Scholar 

  4. M. Borghesi, S. Bulanov, D.H. Campbell, R.J. Clarke, T.Z. Esirkepov, M. Galimberti, L.A. Gizzi, A.J. Mackinnon, N.M. Naumova, F. Pegoraro, H. Ruhl, A. Schiavi, O. Willi, Macroscopic evidence of soliton formation in multiterawatt laser-plasma interaction. Phys. Rev. Lett. 88(13), 135002 (2002)

    Article  ADS  Google Scholar 

  5. E. Brunetti, R.P. Shanks, G.G. Manahan, M.R. Islam, B. Ersfeld, M.P. Anania, S. Cipiccia, R.C. Issac, G. Raj, G. Vieux, G.H. Welsh, S.M. Wiggins, D.A. Jaroszynski, Low emittance, high brilliance relativistic electron beams from a laser-plasma accelerator. Phys. Rev. Lett. 105(21), 215007 (2010)

    Google Scholar 

  6. A. Buck, M. Nicolai, K. Schmid, C.M.S. Sears, A. Sävert, J.M. Mikhailova, F. Krausz, M.C. Kaluza, L. Veisz, Real-time observation of laser-driven electron acceleration. Nat. Phys. 7(7), 543–548 (2011)

    Article  Google Scholar 

  7. S. Busold, A. Almomani, V. Bagnoud, W. Barth, S. Bedacht, A. Blažević, O. Boine-Frankenheim, C. Brabetz, T. Burris-Mog, T.E. Cowan, O. Deppert, M. Droba, H. Eickhoff, U. Eisenbarth, K. Harres, G. Hoffmeister, I. Hofmann, O. Jäckel, R. Jaeger, M. Joost, S.D. Kraft, F. Kroll, M.C. Kaluza, O. Kester, Z. Lecz, T. Merz, F. Nürnberg, H. Al-Omari, A. Orzhekhovskaya, G.G. Paulus, J. Polz, U. Ratzinger, M. Roth, G. Schaumann, P. Schmidt, U. Schramm, G. Schreiber, D. Schumacher, T. Stöhlker, A. Tauschwitz, W. Vinzenz, F. Wagner, S. Yaramyshev, B. Zielbauer, Shaping laser accelerated ions for future applications—the LIGHT collaboration. Nucl. Instrum. Methods Phys. Res. A 740(C), 94–98 (2014)

    Article  ADS  Google Scholar 

  8. S. Busold, D. Schumacher, C. Brabetz, D. Jahn, F. Kroll, O. Deppert, U. Schramm, T.E. Cowan, A. Blažević, V. Bagnoud, M. Roth, Towards highest peak intensities for ultra-short MeV-range ion bunches. Sci. Rep. 1–7 (2015)

    Google Scholar 

  9. R.A. Costa Fraga, A. Kalinin, M. Kühnel, D.C. Hochhaus, A. Schottelius, J. Polz, M.C. Kaluza, P. Neumayer, R.E. Grisenti, Compact cryogenic source of periodic hydrogen and argon droplet beams for relativistic laser-plasma generation. Rev. Sci. Instrum. 83(2), 025102 (2012)

    Article  ADS  Google Scholar 

  10. T.E. Cowan, J. Fuchs, H. Ruhl, A.J. Kemp, P. Audebert, M. Roth, R.B. Stephens, I. Barton, A. Blažević, E. Brambrink, J.A. Cobble, J.C. Fernández, J.C. Gauthier, M. Geissel, B.M. Hegelich, J. Kaae, S. Karsch, G.P. Le Sage, S. Letzring, M. Manclossi, S. Meyroneinc, A. Newkirk, H. Pépin, N. Renard-Le Galloudec, Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92(20), 204801 (2004)

    Article  ADS  Google Scholar 

  11. A.D. Debus, M. Bussmann, U. Schramm, R. Sauerbrey, C.D. Murphy, Z. Major, R. Hörlein, L. Veisz, K. Schmid, J. Schreiber, K.J. Witte, S.P. Jamison, J.G. Gallacher, D.A. Jaroszynski, M.C. Kaluza, B. Hidding, S. Kiselev, R. Heathcote, P.S. Foster, D. Neely, E.J. Divall, C.J. Hooker, J.M. Smith, K. Ertel, A.J. Langley, P. Norreys, J.L. Collier, S. Karsch, Electron bunch length measurements from laser-accelerated electrons using single-shot THz time-domain interferometry. Phys. Rev. Lett. 104(8), 084802 (2010)

    Google Scholar 

  12. M.C. Downer, R. Zgadzaj, A.D. Debus, U. Schramm, M.C. Kaluza, Diagnostics for plasma-based electron accelerators. Rev. Modern Phys. 90(3), 035002 (2018)

    Google Scholar 

  13. E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Modern Phys. 81(3), 1229–1285 (2009)

    Article  ADS  Google Scholar 

  14. M. Gauthier, J.B. Kim, C.B. Curry, B. Aurand, E.J. Gamboa, S. Göde, C. Goyon, A. Hazi, S. Kerr, A. Pak, A. Propp, B. Ramakrishna, J. Ruby, O. Willi, G.J. Williams, C. Rödel, S.H. Glenzer, High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target. Rev. Sci. Instrum. 87(11), 11D827 (2016)

    Article  Google Scholar 

  15. A.J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek, T.C.H. de Raadt, S. Steinke, J.H. Bin, S.S. Bulanov, J. van Tilborg, C.G.R. Geddes, C.B. Schroeder, C. Toth, E. Esarey, K. Swanson, L. Fan-Chiang, G. Bagdasarov, N. Bobrova, V. Gasilov, G. Korn, P. Sasorov, W.P. Leemans, Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122(8), 084801 (2019)

    Google Scholar 

  16. S.M. Hooker, Developments in laser-driven plasma accelerators. Nat. Photonics 7, 775 (2013)

    Article  ADS  Google Scholar 

  17. M.C. Kaluza, M.I.K. Santala, J. Schreiber, G.D. Tsakiris, K.J. Witte, Time-sequence imaging of relativistic laser–plasma interactions using a novel two-color probe pulse. Appl. Phys. B 92(4), 475–479 (2008)

    Article  ADS  Google Scholar 

  18. M.C. Kaluza, H.P. Schlenvoigt, S.P.D. Mangles, A.G.R. Thomas, A.E. Dangor, H. Schwoerer, W.B. Mori, Z. Najmudin, K. Krushelnick, Measurement of magnetic-field structures in a laser-wakefield accelerator. Phys. Rev. Lett. 105, 115002 (2010)

    Google Scholar 

  19. M.F. Kasim, L. Ceurvorst, N. Ratan, J. Sadler, N. Chen, A. Sävert, R.M.G.M. Trines, R. Bingham, P.N. Burrows, M.C. Kaluza, P. Norreys, Quantitative shadowgraphy and proton radiography for large intensity modulations. Phys. Rev. E 95(2), 94–9 (2017)

    Article  Google Scholar 

  20. B. Landgraf, M. Schnell, A. Sävert, M.C. Kaluza, C. Spielmann, High resolution 3D gas-jet characterization. Rev. Sci. Instrum. 82(8), 083106 (2011)

    Article  ADS  Google Scholar 

  21. O. Lundh, J.K. Lim, C. Rechatin, L. Ammoura, A. Ben-Ismaïl, X. Davoine, G. Gallot, J.P. Goddet, E. Lefebvre, V. Malka, J. Faure, Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator. Nat. Phys. 6(12), 1–4 (2011)

    Google Scholar 

  22. A. Macchi, M. Borghesi, M. Passoni, Ion acceleration by superintense laser-plasma interaction. Rev. Modern Phys. 85(2), 751–793 (2013)

    Article  ADS  Google Scholar 

  23. V. Malka, S. Fritzler, E. Lefebvre, E. d’Humières, R. Ferrand, G. Grillon, C. Albaret, S. Meyroneinc, J.P. Chambaret, A. Antonetti, D. Hulin, Practicability of protontherapy using compact laser systems. Med. Phys. 31(6), 1587–1592 (2004)

    Article  Google Scholar 

  24. G.A. Mourou, T. Tajima, S.V. Bulanov, Optics in the relativistic regime. Rev. Modern Phys. 78(2), 309–371 (2006)

    Article  ADS  Google Scholar 

  25. A. Pukhov, J. Meyer-ter Vehn, Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355–361 (2002)

    Article  ADS  Google Scholar 

  26. M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C.G. Brown, W. Fountain, J. Johnson, D.M. Pennington, R.A. Snavely, S.C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S.V. Bulanov, E.M. Campbell, M.D. Perry, H. Powell, Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86(3), 436–439 (2001)

    Article  ADS  Google Scholar 

  27. A. Rousse, K.T. Phuoc, R. Shah, A. Pukhov, E. Lefebvre, V. Malka, S. Kiselev, F. Burgy, J.P. Rousseau, D. Umstadter, D. Hulin, Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93(13), 135005 (2004)

    Article  ADS  Google Scholar 

  28. A. Sävert, S.P.D. Mangles, M. Schnell, E. Siminos, J.M. Cole, M. Leier, M. Reuter, M.B. Schwab, M. Möller, K. Poder, O. Jäckel, G.G. Paulus, C. Spielmann, S. Skupin, Z. Najmudin, M.C. Kaluza, Direct observation of the injection dynamics of a laser Wakefield accelerator using few-femtosecond shadowgraphy. Phys. Rev. Lett. 115(5), 055002 (2015)

    Article  ADS  Google Scholar 

  29. M.B. Schwab, A. Sävert, O. Jäckel, J. Polz, M. Schnell, T. Rinck, L. Veisz, M. Möller, P. Hansinger, G.G. Paulus, M.C. Kaluza, Few-cycle optical probe-pulse for investigation of relativistic laser-plasma interactions. Appl. Phys. Lett. 103(19), 191118 (2013)

    Article  ADS  Google Scholar 

  30. S. Semushin, V. Malka, High density gas jet nozzle design for laser target production. Rev. Sci. Instrum. 72(7), 2961–2965 (2001)

    Article  ADS  Google Scholar 

  31. E. Siminos, S. Skupin, A. Sävert, J.M. Cole, S.P.D. Mangles, M.C. Kaluza, Modeling ultrafast shadow graphy in laser-plasma interaction experiments. Plasma Phys. Control. Fusion 58, 065004 (2016)

    Article  ADS  Google Scholar 

  32. R.A. Snavely, M.H. Key, S.P. Hatchett, T.E. Cowan, M. Roth, T.W. Phillips, M.A. Stoyer, E.A. Henry, T.C. Sangster, M.S. Singh et al., Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85(14), 2945–2948 (2000)

    Article  ADS  Google Scholar 

  33. J.A. Stamper, B.H. Ripin, Faraday-rotation measurements of megagauss magnetic fields in laser-produced plasmas. Phys. Rev. Lett. 34(3), 138 (1975)

    Article  ADS  Google Scholar 

  34. T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  35. S. Ter-Avetisyan, M. Schnürer, S. Busch, E. Risse, P.V. Nickles, W. Sandner, Spectral dips in ion emission emerging from ultrashort laser-driven plasmas. Phys. Rev. Lett. 93(15), 155006 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte C. Kaluza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaluza, M.C. (2019). Ultrafast Plasma Imaging. In: Gizzi, L., Assmann, R., Koester, P., Giulietti, A. (eds) Laser-Driven Sources of High Energy Particles and Radiation. Springer Proceedings in Physics, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-030-25850-4_8

Download citation

Publish with us

Policies and ethics