Skip to main content

Extreme Value Models

  • Chapter
  • First Online:
  • 1718 Accesses

Part of the book series: Springer Actuarial ((SPACLN))

Abstract

This chapter discusses a statistical modeling strategy based on extreme value theory to describe the behavior of data far in the tails of the distributions, with a particular emphasis on large claims in property and casualty insurance and mortality at oldest ages in life insurance. Large claims generally affect liability coverages and require a separate analysis. The reason for a separate analysis of small or moderate losses (also referred to as attritional ones in Solvency 2) and large losses is that no ED distribution seems to emerge as providing an acceptable fit to both small and large claims. As a first application of extreme value theory, the “peak over threshold” strategy is presented, allowing the actuary to determine an optimal threshold separating the two types of losses. As a second application, the force of mortality at the oldest ages is studied with the help of individual ages at death above 95 for extinct cohorts born in Belgium between 1886 and 1904. The analysis supports the existence of an upper limit to human lifetime for these cohorts. Therefore, assuming that the force of mortality becomes ultimately constant, that is, that the remaining lifetime distribution tends to the Negative Exponential one as the attained age grows, appears to be a conservative strategy for the closure of life tables when dealing with life annuities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Even if some controversy arises about her age at death, we keep here Jeanne Calment as the world record of longevity.

References

  • Aarssen K, de Haan L (1994) On the maximal life span of humans. Math Popul Stud 4:259–281

    Article  Google Scholar 

  • Bader B, Yan J, Zhang X (2017) Automated selection of r for the r largest order statistics approach with adjustment for sequential testing. Stat Comput 27:1435–1451

    Article  MathSciNet  Google Scholar 

  • Bader B, Yan J, Zhang X (2018) Automated threshold selection for extreme value analysis via ordered goodness-of-fit tests with adjustment for false discovery rate. Ann Appl Stat 12:310–329

    Article  MathSciNet  Google Scholar 

  • Bakar SA, Hamzah NA, Maghsoudi M, Nadarajah S (2015) Modeling loss data using composite models. Insur Math Econ 61, 146–154

    Google Scholar 

  • Balkema A, de Haan L (1974) Residual life time at great age. Ann Probab 2:792–804

    Article  MathSciNet  Google Scholar 

  • Beirlant J, Goegebeur J, Teugels J, Segers J, Waal DD, Ferro C (2005) Statistics of extremes: theory and applications. Wiley, New York

    MATH  Google Scholar 

  • Calderin-Ojeda E, Kwok CF (2016) Modeling claims data with composite Stoppa models. Scand Actuar J 2016:817–836

    Article  MathSciNet  Google Scholar 

  • Cebrian AC, Denuit M, Lambert P (2003) Generalized Pareto fit to the society of actuaries’ large claims database. N Amn Actuar J 7:18–36

    Article  MathSciNet  Google Scholar 

  • Cooray K, Ananda MMA (2005) Modeling actuarial data with a composite Lognormal-Pareto model. Scand Actuar J 2005:321–334

    Article  MathSciNet  Google Scholar 

  • Danielsson J, Ergun L, de Haan L, de Vries C (2016) Tail index estimation: quantile driven threshold selection. Available at SSRN: https://ssrn.com/abstract=2717478 or http://dx.doi.org/10.2139/ssrn.2717478

  • Einmahl JJ, Einmahl JH, de Haan L (2019) Limits to human life span through extreme value theory. J Am Stat Assoc (in press)

    Google Scholar 

  • Embrechts P, Kluppelberg C, Mikosch T (1997) Modelling extremal events for insurance and finance. Springer, Berlin

    Book  Google Scholar 

  • Gbari S, Poulain M, Dal L, Denuit M (2017a) Extreme value analysis of mortality at the oldest ages: a case study based on individual ages at death. N Amn Actuar J 21:397–416

    Article  MathSciNet  Google Scholar 

  • Gbari S, Poulain M, Dal L, Denuit M (2017b) Generalised Pareto modeling of older ages mortality in Belgium using extreme value techniques. ISBA Discussion Paper, UC Louvain

    MATH  Google Scholar 

  • Gumbel EJ (1937) La Durée Extrême de la Vie Humaine. Hermann, Paris

    MATH  Google Scholar 

  • Hong L, Martin R (2018) Dirichlet process mixture models for insurance loss data. Scandinavian Actuarial Journal 2018:545–554

    Article  MathSciNet  Google Scholar 

  • MacDonald A, Scarrott CJ, Lee D, Darlow B, Reale M, Russell G (2011) A flexible extreme value mixture model. Comput Stat Data Anal 55:2137–2157

    Article  MathSciNet  Google Scholar 

  • MacNeil AJ, Frey R, Embrechts P (2015) Quantitative risk management. Princeton University Press, Concepts, Techniques and Tools

    Google Scholar 

  • Nadarajah S, Bakar S (2013) CompLognormal: an R package for composite lognormal distributions. R J 5:98–104

    Article  Google Scholar 

  • Nadarajah S, Bakar SA (2014) New composite models for the Danish fire insurance data. Scand Actuar J 2014:180–187

    Article  MathSciNet  Google Scholar 

  • Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat 3:119–131

    Article  MathSciNet  Google Scholar 

  • Pigeon M, Denuit M (2011) Composite Lognormal-Pareto model with random threshold. Scand Actuar J 2011:177–192

    Article  MathSciNet  Google Scholar 

  • Reiss R-D, Thomas M (1997) Statistical analysis of extreme values, with applications to insurance, finance, hydrology and other fields. Birkhauser, Basel

    Google Scholar 

  • Rootzen H, Zholud D (2017) Human life is unlimited-but short. Extremes 20:713–728

    Article  MathSciNet  Google Scholar 

  • Scarrott C, MacDonald A (2012) A review of extreme value threshold estimation and uncertainty quantification. REVSTAT-Stat J 10:33–60

    MathSciNet  MATH  Google Scholar 

  • Scollnik DPM (2007) On composite Lognormal-Pareto models. Scand Actuar J 20–33

    Article  MathSciNet  Google Scholar 

  • Scollnik DP, Sun C (2012) Modeling with Weibull-Pareto models. N Amn Actuar J 16:260–272

    Article  MathSciNet  Google Scholar 

  • Tancredi A, Anderson C, O’Hagan A (2006) Accounting for threshold uncertainty in extreme value estimation. Extremes 9:87–106

    Article  MathSciNet  Google Scholar 

  • Watts K, Dupuis D, Jones B (2006) An extreme value analysis of advance age mortality data. N Amn Actuar J 10:162–178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Denuit .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Denuit, M., Hainaut, D., Trufin, J. (2019). Extreme Value Models. In: Effective Statistical Learning Methods for Actuaries I. Springer Actuarial(). Springer, Cham. https://doi.org/10.1007/978-3-030-25820-7_9

Download citation

Publish with us

Policies and ethics