Skip to main content

Inflammatory Biomarkers and Neurotransmitter Perturbations in Delirium

  • Chapter
  • First Online:
Delirium
  • 1170 Accesses

Abstract

Delirium is an acute neuropsychiatric syndrome characterized by acute changes in cognition (e.g., perceptual distortions, impairment in abstract thinking, memory impairment, disorientation), psychomotor alterations (e.g., hyper- or hypoactivity), disturbances in the circadian sleep-wake cycle, emotional disturbance (e.g., irritability, anger, fear, anxiety, perplexity), and altered level of consciousness and attention (e.g., reduced ability to direct, focus, sustain, and shift attention). Delirium’s prevalence surpasses that of all other psychiatric syndromes in every medical unit in which it has been studied, from the general medical setting (between 15% and 60%), among the elderly admitted to a general hospital (between 6% and 46%), in the postoperative setting (between 10% and 74%), and in up to 87% of critically ill patients in the intensive care units.

Delirium is a neurobehavioral syndrome caused by the transient disruption of normal neuronal activity secondary to systemic disturbances. Over the years, multiple theories have been proposed to explain the processes leading to the development of delirium. Most of these theories are complementary, rather than competing, as there is significant interdependence among most of them (see Fig. 10.1). It is likely that none of the previously postulated theories by itself explains the phenomena of delirium but rather that a multitude of them act together to lead to the biochemical derangement we know as delirium. The latest such theory is the Systems Integration Failure Hypothesis (SIFH) which proposes that individuals have varying degrees of non-modifiable factors, or substrates, and that this “load” will determine the basic frailty of the system in an inverse relationship with acute “precipitants and modifiable” factors (e.g., infection and inflammation, sleep deprivation, trauma, surgery, hypoxia, medication use, substances of abuse, organ failure, electrolyte imbalance, metabolic derangement). Ultimately, the SIFH proposes that the specific combination of neurotransmitter dysfunction and the variability in integration and appropriate processing of sensory information and motor responses, as well as the degree of breakdown in cerebral network connectivity, directly contributes to the various cognitive and behavioral changes and clinical motoric phenotype observed in delirium. There are a number of patient-specific physiological characteristics that serve as substrate to the development of delirium (Fig. 10.2). Of these, this article will focus on neuroinflammation as a substrate for delirium and its relationship to the development of specific neurotransmitter perturbations characteristic of the syndrome of delirium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maldonado JR. Acute brain failure: pathophysiology, diagnosis, management, and sequelae of delirium. Crit Care Clin. 2017;33(3):461–519.

    Article  PubMed  Google Scholar 

  2. Maldonado JR. Delirium: neurobiology, characteristics and management. In: Fogel B, Greenberg D, editors. Psychiatric care of the medical patient. New York: Oxford University Press; 2015. p. 823–907.

    Chapter  Google Scholar 

  3. Maldonado JR. Delirium in the acute care setting: characteristics, diagnosis and treatment. Crit Care Clin. 2008;24(4):657–722.

    Article  CAS  PubMed  Google Scholar 

  4. NICE. In: N.I.f.H.a.C. Excellence, editor. Delirium: diagnosis, prevention and management. Manchester: NICE; 2010.

    Google Scholar 

  5. Inouye SK. Delirium in hospitalized elderly patients: recognition, evaluation, and management. Conn Med. 1993;57(5):309–15.

    CAS  PubMed  Google Scholar 

  6. Dyer CB, Ashton CM, Teasdale TA. Postoperative delirium. A review of 80 primary data-collection studies. Arch Intern Med. 1995;155(5):461–5.

    Article  CAS  PubMed  Google Scholar 

  7. Wiesel O, et al. Post-operative delirium of the elderly patient – an iceberg? Harefuah. 2011;150(3):260–3.. 303

    PubMed  Google Scholar 

  8. Ely EW, et al. Evaluation of delirium in critically ill patients: validation of the confusion assessment method for the intensive care unit (CAM-ICU). Crit Care Med. 2001;29(7):1370–9.

    Article  CAS  PubMed  Google Scholar 

  9. Engel GL, Romano J. Delirium, a syndrome of cerebral insufficiency. J Chronic Dis. 1959;9(3):260–77.

    Article  CAS  PubMed  Google Scholar 

  10. Lipowski ZJ. Update on delirium. Psychiatr Clin North Am. 1992;15(2):335–46.

    Article  CAS  PubMed  Google Scholar 

  11. Brown, T.M., Basic mechanisms in the pathogenesis of delirium, The psychiatric care of the medical patient, F.B. Stoudemire, Greenberg DB. 2000, Oxford Press: New York. 571–580.

    Google Scholar 

  12. Maldonado JR. Pathoetiological model of delirium: a comprehensive understanding of the neurobiology of delirium and an evidence-based approach to prevention and treatment. Crit Care Clin. 2008;24(4):789–856.

    Article  CAS  PubMed  Google Scholar 

  13. Maldonado JR. Delirium pathophysiology: an updated hypothesis of the etiology of acute brain failure. Int J Geriatr Psychiatry. 2018;33(11):1428–57.

    Article  PubMed  Google Scholar 

  14. Cerejeira J, et al. The neuroinflammatory hypothesis of delirium. Acta Neuropathol. 2010;119(6):737–54.

    Article  PubMed  Google Scholar 

  15. Maldonado JR. Neuropathogenesis of delirium: review of current etiologic theories and common pathways. Am J Geriatr Psychiatry. 2013;21(12):1190–222.

    Article  PubMed  Google Scholar 

  16. Beloosesky Y, Hendel D, Weiss A, Hershkovitz A, Grinblat J, Pirotsky A, Barak V. Cytokines and C-reactive protein production in hip-fracture-operated elderly patients. J Gerontol A Biol Sci Med Sci. 2007;62(4):420–6.

    Article  PubMed  Google Scholar 

  17. Elie M, et al. Delirium risk factors in elderly hospitalized patients. J Gen Intern Med. 1998;13(3):204–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zampieri FG, et al. Sepsis-associated encephalopathy: not just delirium. Clinics (Sao Paulo). 2011;66(10):1825–31.

    Article  Google Scholar 

  19. van Gool WA, van de Beek D, Eikelenboom P. Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet. 2010;375(9716):773–5.

    Article  PubMed  CAS  Google Scholar 

  20. Simone MJ, Tan ZS. The role of inflammation in the pathogenesis of delirium and dementia in older adults: a review. CNS Neurosci Ther. 2011;17(5):506–13.

    Article  CAS  PubMed  Google Scholar 

  21. Lemstra AW, et al. Pre-operative inflammatory markers and the risk of postoperative delirium in elderly patients. Int J Geriatr Psychiatry. 2008;23(9):943–8.

    Article  PubMed  Google Scholar 

  22. Hala M. Pathophysiology of postoperative delirium: systemic inflammation as a response to surgical trauma causes diffuse microcirculatory impairment. Med Hypotheses. 2007;68(1):194–6.

    Article  PubMed  Google Scholar 

  23. Frederiks JA. Inflammation of the mind. On the 300th anniversary of Gerard van Swieten. J Hist Neurosci. 2000;9(3):307–10.

    Article  CAS  PubMed  Google Scholar 

  24. Cunningham C. Systemic inflammation and delirium: important co-factors in the progression of dementia. Biochem Soc Trans. 2011;39(4):945–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van den Boogaard M, et al. Biomarkers associated with delirium in critically ill patients and their relation with long-term subjective cognitive dysfunction; indications for different pathways governing delirium in inflamed and noninflamed patients. Crit Care. 2011;15(6):R297.

    Article  PubMed  PubMed Central  Google Scholar 

  26. van Munster BC, et al. Neuroinflammation in delirium: a postmortem case-control study. Rejuvenation Res. 2011;14(6):615–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lipowski ZJ. Delirium: how its concept has developed. Int Psychogeriatr. 1991;3(2):115–20.

    Article  CAS  PubMed  Google Scholar 

  28. Sakai A. Phrenitis: inflammation of the mind and the body. Hist Psychiatry. 1991;2(6):193–205.

    Article  CAS  PubMed  Google Scholar 

  29. de Rooij SE, et al. Cytokines and acute phase response in delirium. J Psychosom Res. 2007;62(5):521–5.

    Article  PubMed  Google Scholar 

  30. Godbout JP, et al. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J. 2005;19(10):1329–31.

    Article  CAS  PubMed  Google Scholar 

  31. Dantzer R. Cytokine-induced sickness behavior: mechanisms and implications. Ann N Y Acad Sci. 2001;933:222–34.

    Article  CAS  PubMed  Google Scholar 

  32. Dantzer R. Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur J Pharmacol. 2004;500(1–3):399–411.

    Article  CAS  PubMed  Google Scholar 

  33. Dantzer R, et al. Cytokines and sickness behavior. Ann N Y Acad Sci. 1998;840:586–90.

    Article  CAS  PubMed  Google Scholar 

  34. Cunningham C, et al. Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry. 2009;65(4):304–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kronfol Z, Remick DG. Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry. 2000;157(5):683–94.

    Article  CAS  PubMed  Google Scholar 

  36. Shattuck EC, Muehlenbein MP. Human sickness behavior: ultimate and proximate explanations. Am J Phys Anthropol. 2015;157(1):1–18.

    Article  PubMed  Google Scholar 

  37. Eisenberger NI, et al. In sickness and in health: the co-regulation of inflammation and social behavior. Neuropsychopharmacology. 2017;42(1):242–53.

    Article  CAS  PubMed  Google Scholar 

  38. Tizard I. Sickness behavior, its mechanisms and significance. Anim Health Res Rev. 2008;9(1):87–99.

    Article  PubMed  Google Scholar 

  39. Dantzer R. Cytokine, sickness behavior, and depression. Neurol Clin. 2006;24(3):441–60.

    Article  PubMed  PubMed Central  Google Scholar 

  40. De La Garza R 2nd. Endotoxin- or pro-inflammatory cytokine-induced sickness behavior as an animal model of depression: focus on anhedonia. Neurosci Biobehav Rev. 2005;29(4–5):761–70.

    Article  CAS  Google Scholar 

  41. Kelley KW, et al. Cytokine-induced sickness behavior. Brain Behav Immun. 2003;17(Suppl 1):S112–8.

    Article  CAS  PubMed  Google Scholar 

  42. Hart BL. Biological basis of the behavior of sick animals. Neurosci Biobehav Rev. 1988;12(2):123–37.

    Article  CAS  PubMed  Google Scholar 

  43. Miller AH, et al. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety. 2013;30(4):297–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65(9):732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Behan WM, Stone TW. Role of kynurenines in the neurotoxic actions of kainic acid. Br J Pharmacol. 2000;129(8):1764–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stone TW, et al. The role of kynurenines in the production of neuronal death, and the neuroprotective effect of purines. J Alzheimers Dis. 2001;3(4):355–66.

    Article  CAS  PubMed  Google Scholar 

  47. Stone TW, Forrest CM, Darlington LG. Kynurenine pathway inhibition as a therapeutic strategy for neuroprotection. FEBS J. 2012;279(8):1386–97.

    Article  CAS  PubMed  Google Scholar 

  48. Darlington LG, et al. On the biological importance of the 3-hydroxyanthranilic acid: anthranilic acid ratio. Int J Tryptophan Res. 2010;3:51–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Darlington LG, et al. Altered kynurenine metabolism correlates with infarct volume in stroke. Eur J Neurosci. 2007;26(8):2211–21.

    Article  CAS  PubMed  Google Scholar 

  50. Kochanek PM, et al. Biomarkers of primary and evolving damage in traumatic and ischemic brain injury: diagnosis, prognosis, probing mechanisms, and therapeutic decision making. Curr Opin Crit Care. 2008;14(2):135–41.

    Article  PubMed  Google Scholar 

  51. Dantzer R, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dantzer R, et al. Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Auton Neurosci. 2000;85(1–3):60–5.

    Article  CAS  PubMed  Google Scholar 

  53. Piva S, McCreadie VA, Latronico N. Neuroinflammation in sepsis: sepsis associated delirium. Cardiovasc Hematol Disord Drug Targets. 2015;15(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  54. McGrane S, et al. Procalcitonin and C-reactive protein levels at admission as predictors of duration of acute brain dysfunction in critically ill patients. Crit Care. 2011;15(2):R78.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pan W, et al. Cytokine signaling modulates blood-brain barrier function. Curr Pharm Des. 2011;17(33):3729–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Banks WA, Kastin AJ, Durham DA. Bidirectional transport of interleukin-1 alpha across the blood-brain barrier. Brain Res Bull. 1989;23(6):433–7.

    Article  CAS  PubMed  Google Scholar 

  57. Banks WA, Kastin AJ. Blood to brain transport of interleukin links the immune and central nervous systems. Life Sci. 1991;48(25):PL117–21.

    Article  CAS  PubMed  Google Scholar 

  58. Banks RE, Patel PM, Selby PJ. Interleukin 12: a new clinical player in cytokine therapy. Br J Cancer. 1995;71(4):655–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gutierrez EG, Banks WA, Kastin AJ. Blood-borne interleukin-1 receptor antagonist crosses the blood-brain barrier. J Neuroimmunol. 1994;55(2):153–60.

    Article  CAS  PubMed  Google Scholar 

  60. Banks WA, Kastin AJ, Gutierrez EG. Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci Lett. 1994;179(1–2):53–6.

    Article  CAS  PubMed  Google Scholar 

  61. Pan W, et al. Neuroinflammation facilitates LIF entry into brain: role of TNF. Am J Physiol Cell Physiol. 2008;294(6):C1436–42.

    Article  CAS  PubMed  Google Scholar 

  62. Pan W, et al. Stroke upregulates TNFalpha transport across the blood-brain barrier. Exp Neurol. 2006;198(1):222–33.

    Article  CAS  PubMed  Google Scholar 

  63. Pan W, et al. Receptor-mediated transport of LIF across blood-spinal cord barrier is upregulated after spinal cord injury. J Neuroimmunol. 2006;174(1–2):119–25.

    Article  CAS  PubMed  Google Scholar 

  64. Pan W, Kastin AJ, Brennan JM. Saturable entry of leukemia inhibitory factor from blood to the central nervous system. J Neuroimmunol. 2000;106(1–2):172–80.

    Article  CAS  PubMed  Google Scholar 

  65. Osburg B, et al. Effect of endotoxin on expression of TNF receptors and transport of TNF-alpha at the blood-brain barrier of the rat. Am J Physiol Endocrinol Metab. 2002;283(5):E899–908.

    Article  CAS  PubMed  Google Scholar 

  66. Pan W, et al. Differential permeability of the BBB in acute EAE: enhanced transport of TNT-alpha. Am J Phys. 1996;271(4. Pt 1):E636–42.

    CAS  Google Scholar 

  67. Pan W, et al. Saturable entry of ciliary neurotrophic factor into brain. Neurosci Lett. 1999;263(1):69–71.

    Article  CAS  PubMed  Google Scholar 

  68. Pan W, Kastin AJ. Urocortin and the brain. Prog Neurobiol. 2008;84(2):148–56.

    Article  CAS  PubMed  Google Scholar 

  69. Pan W, Kastin AJ. Adipokines and the blood-brain barrier. Peptides. 2007;28(6):1317–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kastin AJ, Pan W. Feeding peptides interact in several ways with the blood-brain barrier. Curr Pharm Des. 2003;9(10):789–94.

    Article  CAS  PubMed  Google Scholar 

  71. Jeppsson B, et al. Blood-brain barrier derangement in sepsis: cause of septic encephalopathy? Am J Surg. 1981;141(1):136–42.

    Article  CAS  PubMed  Google Scholar 

  72. Butterworth RF. The liver-brain axis in liver failure: neuroinflammation and encephalopathy. Nat Rev Gastroenterol Hepatol. 2013;10:522–8.

    Article  CAS  PubMed  Google Scholar 

  73. Bemeur C, Butterworth RF. Liver-brain proinflammatory signalling in acute liver failure: role in the pathogenesis of hepatic encephalopathy and brain edema. Metab Brain Dis. 2013;28(2):145–50.

    Article  CAS  PubMed  Google Scholar 

  74. Stone TW, Darlington LG. Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov. 2002;1(8):609–20.

    Article  CAS  PubMed  Google Scholar 

  75. Stone TW, Darlington LG. The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders. Br J Pharmacol. 2013;169(6):1211–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Forrest CM, et al. Kynurenine metabolism predicts cognitive function in patients following cardiac bypass and thoracic surgery. J Neurochem. 2011;119(1):136–52.

    Article  CAS  PubMed  Google Scholar 

  77. Krueger JM, Majde JA. Humoral links between sleep and the immune system: research issues. Ann N Y Acad Sci. 2003;992:9–20.

    Article  CAS  PubMed  Google Scholar 

  78. Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci. 1996;19:289–317.

    Article  CAS  PubMed  Google Scholar 

  79. Bokesch PM, Izykenova GA, Justice JB, Easley KA, Dambinova SA. NMDA receptor antibodies predict adverse neurological outcome after cardiac surgery in high-risk patients. Stroke. 2006;37(6):1432–6.

    Article  CAS  PubMed  Google Scholar 

  80. Hall RJ, et al. Delirium and Cerebrospinal Fluid S100B in Hip Fracture Patients: a preliminary study. Am J Geriatr Psychiatry. 2013;21(12):1239–43.

    Article  PubMed  Google Scholar 

  81. van Munster BC, et al. Serum S100B in elderly patients with and without delirium. Int J Geriatr Psychiatry. 2010;25(3):234–9.

    Article  PubMed  Google Scholar 

  82. van Munster BC, et al. Markers of cerebral damage during delirium in elderly patients with hip fracture. BMC Neurol. 2009;9:21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Bogatcheva NV, et al. Arachidonic acid cascade in endothelial pathobiology. Microvasc Res. 2005;69(3):107–27.

    Article  CAS  PubMed  Google Scholar 

  84. Uchikado H, et al. Activation of vascular endothelial cells and perivascular cells by systemic inflammation-an immunohistochemical study of postmortem human brain tissues. Acta Neuropathol. 2004;107(4):341–51.

    Article  CAS  PubMed  Google Scholar 

  85. He F, et al. Molecular mechanism for change in permeability in brain microvascular endothelial cells induced by LPS. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2010;35(11):1129–37.

    CAS  PubMed  Google Scholar 

  86. Hirsch JA, Gibson GE. Selective alteration of neurotransmitter release by low oxygen in vitro. Neurochem Res. 1984;9(8):1039–49.

    Article  CAS  PubMed  Google Scholar 

  87. Hshieh TT, et al. Cholinergic deficiency hypothesis in delirium: a synthesis of current evidence. J Gerontol A Biol Sci Med Sci. 2008;63(7):764–72.

    Article  PubMed  Google Scholar 

  88. Dantzer R, et al. Identification and treatment of symptoms associated with inflammation in medically ill patients. Psychoneuroendocrinology. 2008;33(1):18–29.

    Article  PubMed  Google Scholar 

  89. Sorrells SF, et al. The stressed CNS: when glucocorticoids aggravate inflammation. Neuron. 2009;64(1):33–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. van Munster BC, et al. Cortisol, interleukins and S100B in delirium in the elderly. Brain Cogn. 2010;74(1):18–23.

    Article  PubMed  Google Scholar 

  91. Osse RJ, et al. High preoperative plasma neopterin predicts delirium after cardiac surgery in older adults. J Am Geriatr Soc. 2012;60:661–8.

    Article  PubMed  Google Scholar 

  92. Murr C, et al. Neopterin as a marker for immune system activation. Curr Drug Metab. 2002;3(2):175–87.

    Article  CAS  PubMed  Google Scholar 

  93. Huber JD, et al. Blood-brain barrier tight junctions are altered during a 72-h exposure to lambda-carrageenan-induced inflammatory pain. Am J Physiol Heart Circ Physiol. 2002;283(4):H1531–7.

    Article  CAS  PubMed  Google Scholar 

  94. Brooks TA, et al. Chronic inflammatory pain leads to increased blood-brain barrier permeability and tight junction protein alterations. Am J Physiol Heart Circ Physiol. 2005;289(2):H738–43.

    Article  CAS  PubMed  Google Scholar 

  95. Forsberg M, et al. Breakdown of the blood-brain barrier by anesthetics: possible role in post-surgical delirium. Baltimore: American Delirium Society; 2014.

    Google Scholar 

  96. Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation. Brain Behav Immun. 2016;60:1.

    Article  PubMed  CAS  Google Scholar 

  97. Macdonald A, et al. C-reactive protein levels predict the incidence of delirium and recovery from it. Age Ageing. 2007;36(2):222–5.

    Article  PubMed  Google Scholar 

  98. MacLullich AM, et al. Cerebrospinal fluid interleukin-8 levels are higher in people with hip fracture with perioperative delirium than in controls. J Am Geriatr Soc. 2011;59(6):1151–3.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Grandi C, et al. Brain-derived neurotrophic factor and neuron-specific enolase, but not S100beta, levels are associated to the occurrence of delirium in intensive care unit patients. J Crit Care. 2011;26(2):133–7.

    Article  CAS  PubMed  Google Scholar 

  100. Westhoff D, et al. Preoperative cerebrospinal fluid cytokine levels and the risk of postoperative delirium in elderly hip fracture patients. J Neuroinflammation. 2013;10:122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Cape E, et al. Cerebrospinal fluid markers of neuroinflammation in delirium: a role for interleukin-1beta in delirium after hip fracture. J Psychosom Res. 2014;77(3):219–25.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zupancic ML, Mahajan A. Leptin as a neuroactive agent. Psychosom Med. 2011;73(5):407–14.

    Article  CAS  PubMed  Google Scholar 

  103. Harvey J. Leptin regulation of neuronal excitability and cognitive function. Curr Opin Pharmacol. 2007;7(6):643–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Harvey J. Leptin: a diverse regulator of neuronal function. J Neurochem. 2007;100(2):307–13.

    Article  CAS  PubMed  Google Scholar 

  105. Stieg MR, et al. Leptin: a hormone linking activation of neuroendocrine axes with neuropathology. Psychoneuroendocrinology. 2015;51:47–57.

    Article  CAS  PubMed  Google Scholar 

  106. Quasim T, et al. The relationship between leptin concentrations, the systemic inflammatory response and illness severity in surgical patients admitted to ITU. Clin Nutr. 2004;23(2):233–8.

    Article  CAS  PubMed  Google Scholar 

  107. Zou X, et al. Role of leptin in mood disorder and neurodegenerative disease. Front Neurosci. 2019;13:378.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ge T, et al. Leptin in depression: a potential therapeutic target. Cell Death Dis. 2018;9(11):1096.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Li YT, et al. The association between serum leptin and post stroke depression: results from a cohort study. PLoS One. 2014;9(7):e103137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Hafner S, et al. Social isolation and depressed mood are associated with elevated serum leptin levels in men but not in women. Psychoneuroendocrinology. 2011;36(2):200–9.

    Article  CAS  PubMed  Google Scholar 

  111. Westling S, et al. Low CSF leptin in female suicide attempters with major depression. J Affect Disord. 2004;81(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  112. Atmaca M, et al. Serum leptin and cholesterol values in suicide attempters. Neuropsychobiology. 2002;45(3):124–7.

    Article  CAS  PubMed  Google Scholar 

  113. Kraus T, et al. Low leptin levels but normal body mass indices in patients with depression or schizophrenia. Neuroendocrinology. 2001;73(4):243–7.

    Article  CAS  PubMed  Google Scholar 

  114. Venkatasubramanian G, et al. Neuropharmacology of schizophrenia: is there a role for leptin? Clin Chem Lab Med. 2010;48(6):895–6.

    Article  CAS  PubMed  Google Scholar 

  115. Nurjono M, Neelamekam S, Lee J. Serum leptin and its relationship with psychopathology in schizophrenia. Psychoneuroendocrinology. 2014;50:149–54.

    Article  CAS  PubMed  Google Scholar 

  116. Martorell L, et al. Increased levels of serum leptin in the early stages of psychosis. J Psychiatr Res. 2019;111:24–9.

    Article  PubMed  Google Scholar 

  117. Gohar SM, et al. Association between leptin levels and severity of suicidal behaviour in schizophrenia spectrum disorders. Acta Psychiatr Scand. 2019;139(5):464–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schuld A, et al. Reduced leptin levels in human narcolepsy. Neuroendocrinology. 2000;72(4):195–8.

    Article  CAS  PubMed  Google Scholar 

  119. Kok SW, et al. Reduction of plasma leptin levels and loss of its circadian rhythmicity in hypocretin (orexin)-deficient narcoleptic humans. J Clin Endocrinol Metab. 2002;87(2):805–9.

    Article  CAS  PubMed  Google Scholar 

  120. Dahmen N, et al. Peripheral leptin levels in narcoleptic patients. Diabetes Technol Ther. 2007;9(4):348–53.

    Article  CAS  PubMed  Google Scholar 

  121. Paz-Filho G, Wong ML, Licinio J. Leptin levels and Alzheimer disease. JAMA. 2010;303(15):1478.. author reply 1478-9

    Article  CAS  PubMed  Google Scholar 

  122. Marwarha G, Ghribi O. Leptin signaling and Alzheimer’s disease. Am J Neurodegener Dis. 2012;1(3):245–65.

    PubMed  PubMed Central  Google Scholar 

  123. Magalhaes CA, et al. Leptin in Alzheimer’s disease. Clin Chim Acta. 2015;450:162–8.

    Article  CAS  PubMed  Google Scholar 

  124. Harvey J. Leptin: the missing link in Alzheimer disease? Clin Chem. 2010;56(5):696–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Carro EM. Therapeutic approaches of leptin in Alzheimer’s disease. Recent Pat CNS Drug Discov. 2009;4(3):200–8.

    Article  CAS  PubMed  Google Scholar 

  126. Baranowska-Bik A, et al. Plasma leptin levels and free leptin index in women with Alzheimer’s disease. Neuropeptides. 2015;52:73–8.

    Article  CAS  PubMed  Google Scholar 

  127. King A, et al. Disruption of leptin signalling in a mouse model of Alzheimer’s disease. Metab Brain Dis. 2018;33(4):1097–110.

    Article  CAS  PubMed  Google Scholar 

  128. Sanchez JC, Ospina JP, Gonzalez MI. Association between leptin and delirium in elderly inpatients. Neuropsychiatr Dis Treat. 2013;9:659–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen XW, et al. Preoperative plasma leptin levels predict delirium in elderly patients after hip fracture surgery. Peptides. 2014;57:31–5.

    Article  PubMed  CAS  Google Scholar 

  130. Hatta K, et al. The predictive value of a change in natural killer cell activity for delirium. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;48:26–31.

    Article  CAS  Google Scholar 

  131. Ritchie CW, et al. The association between C-reactive protein and delirium in 710 acute elderly hospital admissions. Int Psychogeriatr. 2014;26(5):717–24.

    Article  CAS  PubMed  Google Scholar 

  132. Kazmierski J, et al. Raised IL-2 and TNF-alpha concentrations are associated with postoperative delirium in patients undergoing coronary-artery bypass graft surgery. Int Psychogeriatr. 2014;26(5):845–55.

    Article  PubMed  Google Scholar 

  133. Pol RA, et al. C-reactive protein predicts postoperative delirium following vascular surgery. Ann Vasc Surg. 2014;28(8):1923–30.

    Article  PubMed  Google Scholar 

  134. Zhang Z, et al. Prediction of delirium in critically ill patients with elevated C-reactive protein. J Crit Care. 2014;29(1):88–92.

    Article  CAS  PubMed  Google Scholar 

  135. Poljak A, et al. Quantitative proteomics of delirium cerebrospinal fluid. Transl Psychiatry. 2014;4:e477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hasegawa T, et al. Risk factors associated with postoperative delirium after surgery for oral cancer. J Craniomaxillofac Surg. 2015;43(7):1094–8.

    Article  PubMed  Google Scholar 

  137. Hirsch J, et al. Perioperative cerebrospinal fluid and plasma inflammatory markers after orthopedic surgery. J Neuroinflammation. 2016;13(1):211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Sun L, et al. Production of inflammatory cytokines, cortisol, and Abeta1-40 in elderly oral cancer patients with postoperative delirium. Neuropsychiatr Dis Treat. 2016;12:2789–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Neerland BE, et al. Associations between delirium and preoperative cerebrospinal fluid C-reactive protein, Interleukin-6, and Interleukin-6 receptor in individuals with acute hip fracture. J Am Geriatr Soc. 2016;64(7):1456–63.

    Article  PubMed  Google Scholar 

  140. Hamasaki MY, et al. Neuropeptides in the brain defense against distant organ damage. J Neuroimmunol. 2016;290:33–5.

    Article  CAS  PubMed  Google Scholar 

  141. Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147(Suppl 1):S232–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Hoogland IC, et al. Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation. 2015;12:114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Kozak HH, et al. Delirium in patients with acute ischemic stroke admitted to the non-intensive stroke unit: incidence and association between clinical features and inflammatory markers. Neurol Neurochir Pol. 2017;51(1):38–44.

    Article  PubMed  Google Scholar 

  144. Wyrobek J, et al. Association of intraoperative changes in brain-derived neurotrophic factor and postoperative delirium in older adults. Br J Anaesth. 2017;119(2):324–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dillon ST, et al. Higher C-reactive protein levels predict postoperative delirium in older patients undergoing major elective surgery: a longitudinal nested case-control study. Biol Psychiatry. 2017;81(2):145–53.

    Article  CAS  PubMed  Google Scholar 

  146. Cereghetti C, et al. Independent predictors of the duration and overall burden of postoperative delirium after cardiac surgery in adults: an observational cohort study. J Cardiothorac Vasc Anesth. 2017;31(6):1966–73.

    Article  PubMed  Google Scholar 

  147. Simons KS, et al. Temporal biomarker profiles and their association with ICU acquired delirium: a cohort study. Crit Care. 2018;22(1):137.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Liu X, Yu Y, Zhu S. Inflammatory markers in postoperative delirium (POD) and cognitive dysfunction (POCD): a meta-analysis of observational studies. PLoS One. 2018;13(4):e0195659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Guenther U, et al. Predisposing and precipitating factors of delirium after cardiac surgery: a prospective observational cohort study. Ann Surg. 2013;257(6):1160–7.

    Article  PubMed  Google Scholar 

  150. Lee HJ, et al. Early assessment of delirium in elderly patients after hip surgery. Psychiatry Investig. 2011;8(4):340–7.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Shen H, et al. Insulin-like growth Factor-1, a potential predicative biomarker for postoperative delirium among elderly patients with open abdominal surgery. Curr Pharm Des. 2016;22(38):5879–83.

    Article  CAS  PubMed  Google Scholar 

  152. Liu P, et al. High serum interleukin-6 level is associated with increased risk of delirium in elderly patients after noncardiac surgery: a prospective cohort study. Chin Med J. 2013;126(19):3621–7.

    CAS  PubMed  Google Scholar 

  153. Wu C, et al. Preoperative serum MicroRNA-155 expression independently predicts postoperative cognitive dysfunction after laparoscopic surgery for colon cancer. Med Sci Monit. 2016;22:4503–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chen Y, et al. Relationship between hs-CRP, IL-6 and the cognitive function decrease of elderly after sevoflurane anesthesia. Chin J Health Labratory Technol. 2011;10:2431–3.

    Google Scholar 

  155. Li Y, et al. Correlation between postoperative cognitive dysfunction and peri-operative inflammation in elderly patients undergoing total hip-replacement surgery. Shanghai Med J. 2011;34(4):249–52.

    CAS  Google Scholar 

  156. Burkhart CS, et al. Postoperative cognitive dysfunction (POCD), markers of brain damage and systemic inflammation in elderly patients. Eur J Anaesthesiol. 2011;28:223.

    Article  Google Scholar 

  157. Capri M, et al. Pre-operative, high-IL-6 blood level is a risk factor of post-operative delirium onset in old patients. Front Endocrinol (Lausanne). 2014;5:173.

    Article  Google Scholar 

  158. Zhang Y, et al. Differential expressions of serum cytokines in cognitive dysfunction patients after colorectal surgery. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2015;31(2):231–4.

    PubMed  Google Scholar 

  159. F Z, J Z, L Y. Relativity research of expression of S-100β protein, IL-1β, IL-6 and α-TNF to recognition after Total knee arthroplasty. J Zhejiang Univ Tradit Chin Med. 2012;12:1290–2.

    Google Scholar 

  160. Lin GX, et al. Serum high-mobility group box 1 protein correlates with cognitive decline after gastrointestinal surgery. Acta Anaesthesiol Scand. 2014;58(6):668–74.

    Article  CAS  PubMed  Google Scholar 

  161. Ouimet S, et al. Incidence, risk factors and consequences of ICU delirium. Intensive Care Med. 2007;33(1):66–73.

    Article  PubMed  Google Scholar 

  162. Pandharipande P, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology. 2006;104(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  163. Girard TD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (awakening and breathing controlled trial): a randomised controlled trial. Lancet. 2008;371(9607):126–34.

    Article  PubMed  Google Scholar 

  164. Ryan DJ, et al. Delirium in an adult acute hospital population: predictors, prevalence and detection. BMJ Open. 2013;3:1.

    Article  Google Scholar 

  165. Srinonprasert V, et al. Risk factors for developing delirium in older patients admitted to general medical wards. J Med Assoc Thail. 2011;94(Suppl 1):S99–104.

    Google Scholar 

  166. Maclullich AM, et al. Unravelling the pathophysiology of delirium: a focus on the role of aberrant stress responses. J Psychosom Res. 2008;65(3):229–38.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Cunningham C, Maclullich AM. At the extreme end of the psychoneuroimmunological spectrum: delirium as a maladaptive sickness behaviour response. Brain Behav Immun. 2013;28:1–13.

    Article  PubMed  Google Scholar 

  168. Combrinck MI, Perry VH, Cunningham C. Peripheral infection evokes exaggerated sickness behaviour in pre-clinical murine prion disease. Neuroscience. 2002;112(1):7–11.

    Article  CAS  PubMed  Google Scholar 

  169. Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci. 2005;25(40):9275–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Murray C, Sanderson DJ, Barkus C, et al. Systemic inflammation induces acute working memory deficits in the primed brain: relevance for delirium. Neurobiol Aging. 2012;33(3):603–16.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Michels M, et al. Biomarker predictors of delirium in acutely ill patients: a systematic review. J Geriatr Psychiatry Neurol. 2019;32(3):119–36.

    Article  PubMed  Google Scholar 

  172. Ritter C, et al. Inflammation biomarkers and delirium in critically ill patients. Crit Care. 2014;18(3):R106.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Alexander SA, et al. Interleukin 6 and apolipoprotein E as predictors of acute brain dysfunction and survival in critical care patients. Am J Crit Care. 2014;23(1):49–57.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Jorge-Ripper C, et al. Prognostic value of acute delirium recovery in older adults. Geriatr Gerontol Int. 2017;17(8):1161–7.

    Article  PubMed  Google Scholar 

  175. Tomasi CD, et al. Baseline acetylcholinesterase activity and serotonin plasma levels are not associated with delirium in critically ill patients. Rev Bras Ter Intensiva. 2015;27(2):170–7.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Plaschke K, et al. Early postoperative delirium after open-heart cardiac surgery is associated with decreased bispectral EEG and increased cortisol and interleukin-6. Intensive Care Med. 2010;36(12):2081–9.

    Article  CAS  PubMed  Google Scholar 

  177. Rudolph JL, et al. Chemokines are associated with delirium after cardiac surgery. J Gerontol A Biol Sci Med Sci. 2008;63(2):184–9.

    Article  PubMed  Google Scholar 

  178. Cerejeira J, et al. The stress response to surgery and postoperative delirium: evidence of hypothalamic-pituitary-adrenal axis hyperresponsiveness and decreased suppression of the GH/IGF-1 Axis. J Geriatr Psychiatry Neurol. 2013;26(3):185–94.

    Article  PubMed  Google Scholar 

  179. van Munster BC, et al. Time-course of cytokines during delirium in elderly patients with hip fractures. J Am Geriatr Soc. 2008;56(9):1704–9.

    Article  PubMed  Google Scholar 

  180. Erikson K, et al. Elevated serum S-100beta in patients with septic shock is associated with delirium. Acta Anaesthesiol Scand. 2019;63(1):69–73.

    Article  CAS  PubMed  Google Scholar 

  181. Girard TD, et al. Associations of markers of inflammation and coagulation with delirium during critical illness. Intensive Care Med. 2012;38(12):1965–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhu Y, et al. Serum galectin-3 levels and delirium among postpartum intensive care unit women. Brain Behav. 2017;7(8):e00773.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Adamis D, Treloar A, Martin FC, Gregson N, Hamilton G, Macdonald AJ. APOE and cytokines as biological markers for recovery of prevalent delirium in elderly medical inpatients. Int J Geriatr Psychiatry. 2007;22(7):688–94.

    Article  PubMed  Google Scholar 

  184. Khan BA, et al. S100 calcium binding protein B as a biomarker of delirium duration in the intensive care unit – an exploratory analysis. Int J Gen Med. 2013;6:855–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Nguyen DN, et al. Cortisol is an associated-risk factor of brain dysfunction in patients with severe sepsis and septic shock. Biomed Res Int. 2014;2014:712742.

    PubMed  PubMed Central  Google Scholar 

  186. Hughes CG, et al. Endothelial activation and blood-brain barrier injury as risk factors for delirium in critically ill patients. Crit Care Med. 2016;44(9):e809–17.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Porter JT, McCarthy KD. Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol. 1997;51(4):439–55.

    Article  CAS  PubMed  Google Scholar 

  188. Pinto SS, et al. Immunocontent and secretion of S100B in astrocyte cultures from different brain regions in relation to morphology. FEBS Lett. 2000;486(3):203–7.

    Article  CAS  PubMed  Google Scholar 

  189. Annesley CE, et al. The evolution and future of CAR T cells for B-cell acute lymphoblastic leukemia. Clin Pharmacol Ther. 2018;103(4):591–8.

    Article  PubMed  Google Scholar 

  190. Brudno JN, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol. 2018;15(1):31–46.

    Article  CAS  PubMed  Google Scholar 

  191. Gust J, Taraseviciute A, Turtle CJ. Neurotoxicity associated with CD19-targeted CAR-T cell therapies. CNS Drugs. 2018;32(12):1091–101.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Le RQ, et al. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist. 2018;23(8):943–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Teachey DT, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6(6):664–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Gust J, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 2017;7(12):1404–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Taraseviciute A, et al. Chimeric antigen receptor T cell-mediated neurotoxicity in nonhuman primates. Cancer Discov. 2018;8(6):750–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lee DW, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant. 2019;25(4):625–38.

    Article  CAS  PubMed  Google Scholar 

  197. Norelli M, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24(6):739–48.

    Article  CAS  PubMed  Google Scholar 

  198. Sofroniew MV. Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci. 2015;16(5):249–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Gust J, et al. Glial injury in neurotoxicity after pediatric CD19-directed chimeric antigen receptor T cell therapy. Ann Neurol. 2019;86:42–54.

    CAS  PubMed  Google Scholar 

  200. Zhang H, et al. Galectin-3 as a marker and potential therapeutic target in breast cancer. PLoS One. 2014;9(9):e103482.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Liang N, et al. Effect of galectin-3 on the behavior of Eca109 human esophageal cancer cells. Mol Med Rep. 2015;11(2):896–902.

    Article  CAS  PubMed  Google Scholar 

  202. Li LC, Li J, Gao J. Functions of galectin-3 and its role in fibrotic diseases. J Pharmacol Exp Ther. 2014;351(2):336–43.

    Article  PubMed  CAS  Google Scholar 

  203. Jiang SS, et al. Galectin-3 is associated with a poor prognosis in primary hepatocellular carcinoma. J Transl Med. 2014;12:273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Basarsky TA, Feighan D, MacVicar BA. Glutamate release through volume-activated channels during spreading depression. J Neurosci. 1999;19(15):6439–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Iijima T, Shimase C, Iwao Y, Sankawa H. Relationships between glutamate release, blood flow and spreading depression: real-time monitoring using an electroenzymatic dialysis electrode. Neurosci Res. 1998;32(3):201–7.

    Article  CAS  PubMed  Google Scholar 

  206. Moghaddam B, Schenk JO, Stewart WB, Hansen AJ. Temporal relationship between neurotransmitter release and ion flux during spreading depression and anoxia. Can J Physiol Pharmacol. 1987;65(5):1105–10.

    Article  CAS  PubMed  Google Scholar 

  207. Shimizu-Sasamata M, Bosque-Hamilton P, Huang PL, Moskowitz MA, Lo EH. Attenuated neurotransmitter release and spreading depression-like depolarizations after focal ischemia in mutant mice with disrupted type I nitric oxide synthase gene. J Neurosci. 1998;18(22):9564–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Somjen GG, Aitken PG, Balestrino M, et al. Extracellular ions, hypoxic irreversible loss of function and delayed postischemic neuron degeneration studied in vitro. Acta Physiol Scand Suppl. 1989;582:58.

    CAS  PubMed  Google Scholar 

  209. Somjen GG, et al. Spreading depression-like depolarization and selective vulnerability of neurons. A brief review. Stroke. 1990;21(11 Suppl):III179–83.

    CAS  PubMed  Google Scholar 

  210. Busto R, et al. Extracellular release of serotonin following fluid-percussion brain injury in rats. J Neurotrauma. 1997;14(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  211. Busto R, et al. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke. 1989;20(7):904–10.

    Article  CAS  PubMed  Google Scholar 

  212. Globus MY, et al. Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. J Neurochem. 1995;65(4):1704–11.

    Article  CAS  PubMed  Google Scholar 

  213. Globus MY, Busto R, Dietrich WD, et al. Effect of ischemia on the in vivo release of striatal dopamine, glutamate, and gamma-aminobutyric acid studied by intracerebral microdialysis. J Neurochem. 1988;51(5):1455–64.

    Article  CAS  PubMed  Google Scholar 

  214. Globus MY, et al. Intra-ischemic extracellular release of dopamine and glutamate is associated with striatal vulnerability to ischemia. Neurosci Lett. 1988;91(1):36–40.

    Article  CAS  PubMed  Google Scholar 

  215. Globus MY, et al. Direct evidence for acute and massive norepinephrine release in the hippocampus during transient ischemia. J Cereb Blood Flow Metab. 1989;9(6):892–6.

    Article  CAS  PubMed  Google Scholar 

  216. Globus MY, et al. Ischemia induces release of glutamate in regions spared from histopathologic damage in the rat. Stroke. 1990;21(11 Suppl):III43–6.

    CAS  PubMed  Google Scholar 

  217. Globus MY, et al. Ischemia-induced extracellular release of serotonin plays a role in CA1 neuronal cell death in rats. Stroke. 1992;23(11):1595–601.

    Article  CAS  PubMed  Google Scholar 

  218. Takagi K, et al. Effect of hyperthermia on glutamate release in ischemic penumbra after middle cerebral artery occlusion in rats. Am J Phys. 1994;267(5 Pt 2):H1770–6.

    CAS  Google Scholar 

  219. Kirsch JR, Diringer MN, Borel CO, Hart GK, Hanley DF Jr. Brain resuscitation. Medical management and innovations. Crit Care Nurs Clin North Am. 1989;1(1):143–54.

    Article  CAS  PubMed  Google Scholar 

  220. Siesjo BK. Cerebral circulation and metabolism. J Neurosurg. 1984;60(5):883–908.

    Article  CAS  PubMed  Google Scholar 

  221. Flacker JM, Cummings V, Mach JR Jr, et al. The association of serum anticholinergic activity with delirium in elderly medical patients. Am J Geriatr Psychiatry. 1998;6(1):31–41.

    Article  CAS  PubMed  Google Scholar 

  222. Flacker JM, Lipsitz LA. Neural mechanisms of delirium: current hypotheses and evolving concepts. J Gerontol A Biol Sci Med Sci. 1999;54(6):B239–46.

    Article  CAS  PubMed  Google Scholar 

  223. Trzepacz PT. Anticholinergic model for delirium. Semin Clin Neuropsychiatry. 1996;1(4):294–303.

    CAS  PubMed  Google Scholar 

  224. Blass J, Gibson G, Duffy T, et al. Cholinergic dysfunction: a common denominator in metabolic encephalopathies. In: Pepeu G, Ladinsky H, editors. Cholinergic mechanisms. New York: Plenum Publishing Corp; 1981. p. 921–8.

    Chapter  Google Scholar 

  225. Perry E, et al. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci. 1999;22(6):273–80.

    Article  CAS  PubMed  Google Scholar 

  226. Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci. 1990;13:171–82.

    Article  CAS  PubMed  Google Scholar 

  227. Obrenovitch TP, Urenjak J, Zilkha E. Intracerebral microdialysis combined with recording of extracellular field potential: a novel method for investigation of depolarizing drugs in vivo. Br J Pharmacol. 1994;113(4):1295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Wahl F, et al. Extracellular glutamate during focal cerebral ischaemia in rats: time course and calcium dependency. J Neurochem. 1994;63(3):1003–11.

    Article  CAS  PubMed  Google Scholar 

  229. Rennie MJ, et al. Skeletal muscle glutamine transport, intramuscular glutamine concentration, and muscle-protein turnover. Metabolism. 1989;38(8 Suppl 1):47–51.

    Article  CAS  PubMed  Google Scholar 

  230. Haussinger D, et al. Cellular hydration state: an important determinant of protein catabolism in health and disease. Lancet. 1993;341(8856):1330–2.

    Article  CAS  PubMed  Google Scholar 

  231. Ferenci P, Schafer DF, Kleinberger G, Hoofnagle JH, Jones EA. Serum levels of gamma-aminobutyric-acid-like activity in acute and chronic hepatocellular disease. Lancet. 1983;2(8354):811–4.

    Article  CAS  PubMed  Google Scholar 

  232. Ross CA. CNS arousal systems: possible role in delirium. Int Psychogeriatr. 1991;3(2):353–71.

    Article  CAS  PubMed  Google Scholar 

  233. Maldonado J. An approach to the patient with substance use and abuse. Med Clin North Am. 2010;94(6):1169–205.. x-i

    Article  PubMed  Google Scholar 

  234. Akaike N, Shirasaki T, Yakushiji T. Quinolones and fenbufen interact with GABAA receptor in dissociated hippocampal cells of rat. J Neurophysiol. 1991;66(2):497–504.

    Article  CAS  PubMed  Google Scholar 

  235. van der Mast RC. Pathophysiology of delirium. J Geriatr Psychiatry Neurol. 1998;11(3):138–45.. discussion 157-8

    Article  PubMed  Google Scholar 

  236. van der Mast RC, et al. Is delirium after cardiac surgery related to plasma amino acids and physical condition? J Neuropsychiatry Clin Neurosci. 2000;12(1):57–63.

    Article  PubMed  Google Scholar 

  237. Bhardwaj A, et al. Ischemia in the dorsal hippocampus is associated with acute extracellular release of dopamine and norepinephrine. J Neural Transm Gen Sect. 1990;80(3):195–201.

    Article  CAS  PubMed  Google Scholar 

  238. Rigney T. Allostatic load and delirium in the hospitalized older adult. Nurs Res. 2010;59(5):322–30.

    Article  PubMed  Google Scholar 

  239. Basavaraju N, Phillips SL. Cortisol deficient state. A cause of reversible cognitive impairment and delirium in the elderly. J Am Geriatr Soc. 1989;37(1):49–51.

    Article  CAS  PubMed  Google Scholar 

  240. Bisschop PH, et al. Cortisol, insulin, and glucose and the risk of delirium in older adults with hip fracture. J Am Geriatr Soc. 2011;59(9):1692–6.

    Article  PubMed  Google Scholar 

  241. Kazmierski J, et al. Cortisol levels and neuropsychiatric diagnosis as markers of postoperative delirium: a prospective cohort study. Crit Care. 2013;17(2):R38.

    Article  PubMed  PubMed Central  Google Scholar 

  242. Manenschijn L, et al. Glucocorticoid receptor haplotype is associated with a decreased risk of delirium in the elderly. Am J Med Genet B Neuropsychiatr Genet. 2011;156B(3):316–21.

    Article  CAS  PubMed  Google Scholar 

  243. McIntosh TK, Bush HL, Yeston NS, et al. Beta-endorphin, cortisol and postoperative delirium: a preliminary report. Psychoneuroendocrinology. 1985;10(3):303–13.

    Article  CAS  PubMed  Google Scholar 

  244. O’Keeffe ST, Devlin JG. Delirium and the dexamethasone suppression test in the elderly. Neuropsychobiology. 1994;30(4):153–6.

    Article  PubMed  Google Scholar 

  245. Pearson A, et al. Cerebrospinal fluid cortisol levels are higher in patients with delirium versus controls. BMC Res Notes. 2010;3:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Kazmierski J, et al. Mild cognitive impairment with associated inflammatory and cortisol alterations as independent risk factor for postoperative delirium. Dement Geriatr Cogn Disord. 2014;38(1–2):65–78.

    Article  CAS  PubMed  Google Scholar 

  247. Pfister D, et al. Cerebral perfusion in sepsis-associated delirium. Crit Care. 2008;12(3):R63.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Cerejeira J, et al. The cholinergic system and inflammation: common pathways in delirium pathophysiology. J Am Geriatr Soc. 2012;60(4):669–75.

    Article  PubMed  Google Scholar 

  249. Vasunilashorn SM, et al. High C-reactive protein predicts delirium incidence, duration, and feature severity after major noncardiac surgery. J Am Geriatr Soc. 2017;65(8):e109–16.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Vasunilashorn SM, et al. The association between C-reactive protein and postoperative delirium differs by catechol-O-methyltransferase genotype. Am J Geriatr Psychiatry. 2019;27(1):1–8.

    Article  PubMed  Google Scholar 

  251. Vasunilashorn SM, et al. Development of a dynamic multi-protein signature of postoperative delirium. J Gerontol A Biol Sci Med Sci. 2019;74(2):261–8.

    Article  CAS  PubMed  Google Scholar 

  252. Baranyi A, Rothenhausler HB. The impact of soluble interleukin-2 receptor as a biomarker of delirium. Psychosomatics. 2014;55(1):51–60.

    Article  PubMed  Google Scholar 

  253. Skrobik Y, et al. Factors predisposing to coma and delirium: fentanyl and midazolam exposure; CYP3A5, ABCB1, and ABCG2 genetic polymorphisms; and inflammatory factors. Crit Care Med. 2013;41(4):999–1008.

    Article  CAS  PubMed  Google Scholar 

  254. Egberts A, et al. Neopterin: a potential biomarker for delirium in elderly patients. Dement Geriatr Cogn Disord. 2015;39(1–2):116–24.

    Article  CAS  PubMed  Google Scholar 

  255. Liu L, et al. Effects of dexmedetomidine combined with sufentanil on postoperative delirium in young patients after general anesthesia. Med Sci Monit. 2018;24:8925–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. van Munster BC, Zwinderman AH, de Rooij SE. Genetic variations in the interleukin-6 and interleukin-8 genes and the interleukin-6 receptor gene in delirium. Rejuvenation Res. 2011;14(4):425–8.

    Article  PubMed  CAS  Google Scholar 

  257. Zhang ZY, et al. Impact of length of red blood cells transfusion on postoperative delirium in elderly patients undergoing hip fracture surgery: a cohort study. Injury. 2016;47(2):408–12.

    Article  PubMed  Google Scholar 

  258. Caplan GA, et al. Cerebrospinal fluid in long-lasting delirium compared with Alzheimer’s dementia. J Gerontol A Biol Sci Med Sci. 2010;65(10):1130–6.

    Article  PubMed  Google Scholar 

  259. Beishuizen SJ, et al. Timing is critical in determining the association between delirium and S100 calcium-binding protein B. J Am Geriatr Soc. 2015;63(10):2212–4.

    Article  PubMed  Google Scholar 

  260. Liu J, et al. Predictive value of serum S100B levels in patients with multiple trauma combined delirium for their outcome at intensive care unit discharge. Zhonghua Yi Xue Za Zhi. 2018;98(9):692–5.

    CAS  PubMed  Google Scholar 

  261. Sun Y, et al. Effects of dexmedetomidine on emergence delirium in pediatric cardiac surgery. Minerva Pediatr. 2017;69(3):165–73.

    PubMed  Google Scholar 

  262. Schreuder L, et al. Pathophysiological and behavioral effects of systemic inflammation in aged and diseased rodents with relevance to delirium: a systematic review. Brain Behav Immun. 2017;62:362–81.

    Article  CAS  PubMed  Google Scholar 

  263. Brown RE, et al. Control of sleep and wakefulness. Physiol Rev. 2012;92(3):1087–187.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Maldonado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maldonado, J.R. (2020). Inflammatory Biomarkers and Neurotransmitter Perturbations in Delirium. In: Hughes, C., Pandharipande, P., Ely, E. (eds) Delirium. Springer, Cham. https://doi.org/10.1007/978-3-030-25751-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25751-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25750-7

  • Online ISBN: 978-3-030-25751-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics