A 25-Year-Old Woman with Droopy Eyelids and Double Vision

  • Lan ZhouEmail author
  • Chunyu Cai


Mitochondrial myopathy is caused by mutations in nuclear or mitochondrial genes with resultant defects in the mitochondrial oxidative phosphorylation function. Patients with mitochondrial myopathy usually present with chronic progressive bilateral eyelid ptosis and ophthalmoplegia. They may also manifest fixed proximal limb weakness, cardiac conduction block, cardiomyopathy, hearing loss, retinopathy, and diabetes mellitus, among others. Here we present a case of mitochondrial myopathy with clinical, pathological, and genetic features consistent with Kearns-Sayre syndrome.


Mitochondrial myopathy Mitochondrial disease Kearns-Sayre syndrome Muscle biopsy Ragged red fibers COX-deficient fibers Paracrystalline inclusion 


  1. 1.
    Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, et al. Mitochondrial diseases. Nat Rev Dis Primers. 2016;2:16080.CrossRefGoogle Scholar
  2. 2.
    Ahmed ST, Craven L, Russell OM, Turnbull DM, Vincent AE. Diagnosis and treatment of mitochondrial myopathies. Neurotherapeutics. 2018;15(4):943–53.CrossRefGoogle Scholar
  3. 3.
    Mancuso M, Orsucci D, Angelini C, Bertini E, Carelli V, Comi GP, et al. Redefining phenotypes associated with mitochondrial DNA single deletion. J Neurol. 2015;262(5):1301–9.CrossRefGoogle Scholar
  4. 4.
    Parikh S, Goldstein A, Koenig MK, Scaglia F, Enns GM, Saneto R, et al. Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med. 2015;17(9):689–701.CrossRefGoogle Scholar
  5. 5.
    Bourgeois JM, Tarnopolsky MA. Pathology of skeletal muscle in mitochondrial disorders. Mitochondrion. 2004;4(5–6):441–52.CrossRefGoogle Scholar
  6. 6.
    Dubowitz V, Sewry C, Oldfors A. Metabolic myopathies II: lipid-related disorders and mitochondrial myopathies. In: Muscle biopsy: a practical approach. 4th ed. Saunders Elsevier; 2013. p. 446–84.Google Scholar
  7. 7.
    Engel WK, Cunningham GG. Rapid examination of muscle tissue. An improved trichrome method for Fresh-Frozen biopsy sections. Neurology. 1963;13:919–23.CrossRefGoogle Scholar
  8. 8.
    Vogel H. Mitochondrial myopathies and the role of the pathologist in the molecular era. J Neuropathol Exp Neurol. 2001;60(3):217–27.CrossRefGoogle Scholar
  9. 9.
    Eppenberger-Eberhardt M, Riesinger I, Messerli M, Schwarb P, Muller M, Eppenberger HM, et al. Adult rat cardiomyocytes cultured in creatine-deficient medium display large mitochondria with paracrystalline inclusions, enriched for creatine kinase. J Cell Biol. 1991;113(2):289–302.CrossRefGoogle Scholar
  10. 10.
    Holt IJ, Harding AE, Petty RK, Morgan-Hughes JA. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet. 1990;46:428–33.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Cao Z, Wanagat J, McKiernan SH, Aiken JM. Mitochondrial DNA deletion mutations are concomitant with ragged red regions of individual, aged muscle fibers: analysis by laser-capture microdissection. Nucleic Acids Res. 2001;29(21):4502–8.CrossRefGoogle Scholar
  12. 12.
    Bernier FP, Boneh A, Dennett X, Chow CW, Cleary MA, Thorburn DR. Diagnostic criteria for respiratory chain disorders in adults and children. Neurology. 2002;59(9):1406–11.CrossRefGoogle Scholar
  13. 13.
    Morgello S, Wolfe D, Godfrey E, Feinstein R, Tagliati M, Simpson DM. Mitochondrial abnormalities in human immunodeficiency virus-associated myopathy. Acta Neuropathol. 1995;90(4):366–74.CrossRefGoogle Scholar
  14. 14.
    Rifai Z, Welle S, Kamp C, Thornton CA. Ragged red fibers in normal aging and inflammatory myopathy. Ann Neurol. 1995;37(1):24–9.CrossRefGoogle Scholar
  15. 15.
    Woo M, Chung SJ, Nonaka I. Perifascicular atrophic fibers in childhood dermatomyositis with particular reference to mitochondrial changes. J Neurol Sci. 1988;88(1–3):133–43.CrossRefGoogle Scholar
  16. 16.
    Cejudo P, Bautista J, Montemayor T, Villagomez R, Jimenez L, Ortega F, et al. Exercise training in mitochondrial myopathy: a randomized controlled trial. Muscle Nerve. 2005;32(3):342–50.CrossRefGoogle Scholar
  17. 17.
    Jeppesen TD, Duno M, Schwartz M, Krag T, Rafiq J, Wibrand F, et al. Short- and long-term effects of endurance training in patients with mitochondrial myopathy. Eur J Neurol. 2009;16(12):1336–9.CrossRefGoogle Scholar
  18. 18.
    Jeppesen TD, Schwartz M, Olsen DB, Wibrand F, Krag T, Duno M, et al. Aerobic training is safe and improves exercise capacity in patients with mitochondrial myopathy. Brain. 2006;129(Pt 12):3402–12.CrossRefGoogle Scholar
  19. 19.
    Taivassalo T, Gardner JL, Taylor RW, Schaefer AM, Newman J, Barron MJ, et al. Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain. 2006;129(Pt 12):3391–401.CrossRefGoogle Scholar
  20. 20.
    Taivassalo T, Shoubridge EA, Chen J, Kennaway NG, DiMauro S, Arnold DL, et al. Aerobic conditioning in patients with mitochondrial myopathies: physiological, biochemical, and genetic effects. Ann Neurol. 2001;50(2):133–41.CrossRefGoogle Scholar
  21. 21.
    Glover EI, Martin J, Maher A, Thornhill RE, Moran GR, Tarnopolsky MA. A randomized trial of coenzyme Q10 in mitochondrial disorders. Muscle Nerve. 2010;42(5):739–48.CrossRefGoogle Scholar
  22. 22.
    Rodriguez MC, MacDonald JR, Mahoney DJ, Parise G, Beal MF, Tarnopolsky MA. Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle Nerve. 2007;35(2):235–42.CrossRefGoogle Scholar
  23. 23.
    Tarnopolsky MA, Roy BD, MacDonald JR. A randomized, controlled trial of creatine monohydrate in patients with mitochondrial cytopathies. Muscle Nerve. 1997;20(12):1502–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Departments of Neurology and PathologyBoston University Medical CenterBostonUSA
  2. 2.Department of PathologyUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations