Abstract
The aging population worldwide is expanding at an increasing rate. By 2050, approximately a quarter of the world population will consist of the elderly. To slow down the aging process, exploration of aging biomarkers and the search for novel antiaging targets have attracted much interest. Nonetheless, because aging research is costly and time-consuming and the aging process is complicated, aging research is considered one of the most difficult biological fields. Here, providing a broader definition of aging biomarkers, we review cutting-edge research on aging biomarkers at the molecular, cellular, and organismal levels, thus shedding light on the relations between aging and telomeres, longevity proteins, a senescence-associated secretory phenotype, the gut microbiota and metabolic patterns. Furthermore, we evaluate the suitability of these aging biomarkers for the development of novel antiaging targets on the basis of the most recent research on this topic. We also discuss the possible implications and some controversies regarding these biomarkers for therapeutic interventions in aging and age-related disease processes. We have attempted to cover all of the latest research on aging biomarkers in our review but there are countless studies on aging biomarkers, and the topic of aging interventions will continue to deepen even further. We hope that our review can serve as a reference for better characterization of aging and as inspiration for the screening of antiaging drugs as well as give some clues to further research into aging biomarkers and antiaging targets.
Keywords
- Aging biomarker
- Telomere
- Longevity protein
- Senescence-associated secretory phenotype
- Gut microbiota
- Metabolism
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
United Nations DoEaS, Population Division (2017) World population prospects: the 2017 revision, key findings and advance tables. https://esa.un.org/unpd/wpp/Publications/Files/WPP2017_KeyFindings.pdf
Vijg J, Campisi J (2008) Puzzles, promises and a cure for ageing. Nature 454(7208):1065–1071
Jones OR, Scheuerlein A, Salguero-Gomez R, Camarda CG, Schaible R, Casper BB et al (2014) Diversity of ageing across the tree of life. Nature 505(7482):169–173
Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M, Ablaeva J et al (2013) High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 499(7458):346–349
Lowsky DJ, Olshansky SJ, Bhattacharya J, Goldman DP (2014) Heterogeneity in healthy aging. J Gerontol A Biol Sci Med Sci 69(6):640–649
Patrick JB, Melanie MW, Chen C, Morgan EL, Kristine Y, Steven PR, Bret RR (2018) Biological Age, Not Chronological Age, Is Associated with Late-Life Depression. The Journals of Gerontology: Series A 73(10):1370–1376
Kim S-J, Kim BJ, Kang H (2017) Measurement of biological age may help to assess the risk of colorectal adenoma in screening colonoscopy. World J Gastroenterol 23(37):6877–6883
Zhang W, Jia L, Cai G, Shao F, Lin H, Liu Z et al (2017) Model construction for biological age based on a cross-sectional study of a healthy Chinese han population. J Nutr Health Aging 21(10):1233–1239
Borkan GA, Norris AH (1980) Biological age in adulthood: comparison of active and inactive U.S. males. Hum Biol 52(4):787–802
Bernardes de Jesus B, Blasco MA (2012) Potential of telomerase activation in extending health span and longevity. Curr Opin Cell Biol 24(6):739–743
Janssens GE, Lin X-X, Millan-Arino L, Kavsek A, Sen I, Seinstra RI et al (2019) Transcriptomics-based screening identifies pharmacological inhibition of Hsp90 as a means to defer aging. Cell Rep 27(2):467–480.e6
Blackburn EH (1990) Telomeres: structure and synthesis. J Biol Chem 265(11):5919–5921
Blackburn EH (2005) Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 579(4):859–862
Honig LS, Kang MS, Cheng R, Eckfeldt JH, Thyagarajan B, Leiendecker-Foster C et al (2015) Heritability of telomere length in a study of long-lived families. Neurobiol Aging 36(10):2785–2790
Strong MA, Vidal-Cardenas SL, Karim B, Yu H, Guo N, Greider CW (2011) Phenotypes in mTERT(+/−) and mTERT(−/−) mice are due to short telomeres, not telomere-independent functions of telomerase reverse transcriptase. Mol Cell Biol 31(12):2369–2379
Jaskelioff M, Muller FL, Paik J-H, Thomas E, Jiang S, Adams AC et al (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469(7328):102–106
Wang Q, Zhan Y, Pedersen NL, Fang F, Hagg S (2018) Telomere length and all-cause mortality: a meta-analysis. Ageing Res Rev 48:11–20
Simoncini T, Hafezl-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK (2000) Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407(6803):538–541
Austad SN (2006) Why women live longer than men: sex differences in longevity. Gend Med 3(2):79–92
Sansoni P, Cossarizza A, Brianti V, Fagnoni F, Snelli G, Monti D et al (1993) Lymphocyte subsets and natural killer cell activity in healthy old people and centenarians. Blood 82(9):2767–2773
Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA et al (2017) Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol 8:1960. https://doi.org/10.3389/fimmu.2017.01960
D’Mello MJ, Ross SA, Briel M, Anand SS, Gerstein H, Pare G (2015) Association between shortened leukocyte telomere length and cardiometabolic outcomes: systematic review and meta-analysis. Circ Cardiovasc Genet 8(1):82–90
Panossian LA, Porter VR, Valenzuela HF, Zhu X, Reback E, Masterman D et al (2003) Telomere shortening in T cells correlates with Alzheimer’s disease status. Neurobiol Aging 24(1):77–84
Dai D-F, Chiao YA, Marcinek DJ, Szeto HH, Rabinovitch PS (2014) Mitochondrial oxidative stress in aging and healthspan. Longev Healthspan 3:6. https://doi.org/10.1186/2046-2395-3-6
Serra V, von Zglinicki T, Lorenz M, Saretzki G (2003) Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. J Biol Chem 278(9):6824–6830
Liu L, Trimarchi JR, Smith PJS, Keefe DL (2002) Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 1(1):40–46
Latifovic L, Peacock SD, Massey TE, King WD (2016) The influence of alcohol consumption, cigarette smoking, and physical activity on leukocyte telomere length. Cancer Epidemiol Biomark Prev 25(2):374–380
Shay JW (2016) Role of telomeres and telomerase in aging and cancer. Cancer Disgov 6(6):584–593
Savage SA, Gadalla SM, Chanock SJ (2013) The long and short of telomeres and cancer association studies. J Natl Cancer Inst 105(7):448–449
Mensà E, Latini S, Ramini D, Storci G, Bonafè M, Olivieri F (2019) The telomere world and aging: analytical challenges and future perspectives. Ageing Res Rev 50:27–42
Ames BN (2018) Prolonging healthy aging: longevity vitamins and proteins. Proc Natl Acad Sci U S A 115(43):10836–10844
Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91(7):1033–1042
Guarente L (2000) Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 14(9):1021–1026
Fang Y, Tang S, Li X (2019) Sirtuins in metabolic and epigenetic regulation of stem cells. Trends Endocrinol Metab 30(3):177–188
Watroba M, Szukiewicz D (2016) The role of sirtuins in aging and age-related diseases. Adv Med Sci 61(1):52–62
Wątroba M, Dudek I, Skoda M, Stangret A, Rzodkiewicz P, Szukiewicz D (2017) Sirtuins, epigenetics and longevity. Ageing Res Rev 40:11–19
Kanfi Y, Shalman R, Peshti V, Pilosof SN, Gozlan YM, Pearson KJ et al (2008) Regulation of SIRT6 protein levels by nutrient availability. FEBS Lett 582(5):543–548
Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X et al (2007) Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100(10):1512–1521
Tasselli L, Zheng W, Chua KF (2017) SIRT6: novel mechanisms and links to aging and disease. Trends Endocrinol Metab 28(3):168–185
Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L et al (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124(2):315–329
Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L et al (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483(7388):218–221
Xiao N-M, Zhang Y-M, Zheng Q, Gu J (2004) Klotho is a serum factor related to human aging. Chin Med J 117(5):742–747
Laszczyk AM, Fox-Quick S, Vo HT, Nettles D, Pugh PC, Overstreet-Wadiche L, King GD (2017) Klotho regulates postnatal neurogenesis and protects against age-related spatial memory loss. Neurobiol Aging 59:41–54
Benoit B, Meugnier E, Castelli M, Chanon S, Vieille-Marchiset A, Durand C, Bendridi N, Pesenti S, Monternier PA, Durieux AC, Freyssenet D, Rieusset J, Lefai E, Vidal H, Ruzzin J (2017) Fibroblast growth factor 19 regulates skeletal muscle mass and ameliorates muscle wasting in mice. Nat Med 23:990–996
Sahu A, Mamiya H, Shinde SN, Cheikhi A, Winter LL, Vo NV et al (2018) Age-related declines in alpha-Klotho drive progenitor cell mitochondrial dysfunction and impaired muscle regeneration. Nat Commun 9(1):4859. https://doi.org/10.1038/s41467-018-07253-3
Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120(4):449–460
Lee W-S, Kim J (2018) Insulin-like growth factor-1 signaling in cardiac aging. Biochim Biophys Acta Mol Basis Dis 1864(5 Pt B):1931–1938
Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S et al (2008) Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132(6):1025–1038
Bartke A (2008) Impact of reduced insulin-like growth factor-1/insulin signaling on aging in mammals: novel findings. Aging Cell 7(3):285–290
Ben-Avraham D, Govindaraju DR, Budagov T, Fradin D, Durda P, Liu B et al (2017) The GH receptor exon 3 deletion is a marker of male-specific exceptional longevity associated with increased GH sensitivity and taller stature. Sci Adv 3(6):e1602025. https://doi.org/10.1126/sciadv.1602025
Suh Y, Atzmon G, Cho M-O, Hwang D, Liu B, Leahy DJ et al (2008) Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci U S A 105(9):3438–3442
Kennedy BK, Lamming DW (2016) The mechanistic target of rapamycin: the grand conducTOR of metabolism and aging. Cell Metab 23(6):990–1003
Shimobayashi M, Hall MN (2014) Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15(3):155–162
Arriola Apelo SI, Neuman JC, Baar EL, Syed FA, Cummings NE, Brar HK, Pumper CP, Kimple ME, Lamming DW (2016) Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system. Aging Cell 15:28–38
Coppé J-P, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12):2853–2868. https://doi.org/10.1371/journal.pbio.0060301
Campisi J (2011) Cellular senescence: putting the paradoxes in perspective. Curr Opin Genet Dev 21(1):107–112
Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G, Atkinson EJ et al (2017) Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 8:14532. https://doi.org/10.1038/ncomms14532
Rodier F, Coppé J-P, Patil CK, Hoeijmakers WA, Muñoz DP, Raza SR et al (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11(8):973–979
Shelton DN, Chang E, Whittier PS, Choi D, Funk WD (1999) Microarray analysis of replicative senescence. Curr Biol 9(17):939–945
Kang C, Xu Q, Martin TD, Li MZ, Demaria M, Aron L et al (2015) The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349(6255):aaa5612. https://doi.org/10.1126/science.aaa5612
Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15(8):978–990
Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J (2009) Cell surface-bound IL-1α is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci U S A 106(40):17031–17036
Mariotti M, Castiglioni S, Bernardini D, Maier JA (2006) Interleukin 1 alpha is a marker of endothelial cellular senescent. Immun Ageing 3:4. https://doi.org/10.1186/1742-4933-3-4
Freund A, Patil CK, Campisi J (2011) p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 30(8):1536–1548
Laberge R-M, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L et al (2015) MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 17(8):1049–1061
Meyer SC, Levine RL (2014) Molecular pathways: molecular basis for sensitivity and resistance to JAK kinase inhibitors. Clin Cancer Res 20(8):2051–2059
Liu S, Uppal H, Demaria M, Desprez P-Y, Campisi J, Kapahi P (2015) Simvastatin suppresses breast cancer cell proliferation induced by senescent cells. Sci Rep 5:17895. https://doi.org/10.1038/srep17895
Kirkland JL, Tchkonia T (2017) Cellular senescence: a translational perspective. EBioMedicine 21:21–28
Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM et al (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335(6076):1638–1643
Lehmann BD, Paine MS, Brooks AM, McCubrey JA, Renegar RH, Wang R et al (2008) Senescence-associated exosome release from human prostate cancer cells. Cancer Res 68(19):7864–7871
Wang AL, Lukas TJ, Yuan M, Du N, Tso MO, Neufeld AH (2009) Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS One 4(1):e4160. https://doi.org/10.1371/journal.pone.0004160
Takasugi M, Okada R, Takahashi A, Chen DV, Watanabe S, Hara E (2017) Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat Commun 8:15729. https://doi.org/10.1038/ncomms15728
Mitsuhashi M, Taub DD, Kapogiannis D, Eitan E, Zukley L, Mattson MP et al (2013) Aging enhances release of exosomal cytokine mRNAs by Aβ1-42-stimulated macrophages. FASEB J 27(12):5141–5150
van Balkom BW, De Jong OG, Smits M, Brummelman J, den Ouden K, de Bree PM et al (2013) Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121(19):3997–4006
Gan W, Liu XL, Yu T, Zou YG, Li TT, Wang S et al (2018) Urinary 8-oxo-7,8-dihydroguanosine as a potential biomarker of aging. Front Aging Neurosci 10:34. https://doi.org/10.3389/fnagi.2018.00034
Rodier F (2013) Detection of the senescence-associated secretory phenotype (SASP). Methods Mol Biol 965:165–173
Thomas V, Clark J, Doré J (2015) Fecal microbiota analysis: an overview of sample collection methods and sequencing strategies. Future Microbiol 10(9):1485–1504
Schneiderhan J, Master-Hunter T, Locke A (2016) Targeting gut flora to treat and prevent disease. J Fam Pract 65(1):34–38
Rodriguez-Castaño GP, Caro-Quintero A, Reyes A, Lizcano F (2017) Advances in gut microbiome research, opening new strategies to cope with a western lifestyle. Front Genet 7:224. https://doi.org/10.3389/fgene.2016.00224
Vaiserman AM, Koliada AK, Marotta F (2017) Gut microbiota: a player in aging and a target for anti-aging intervention. Ageing Res Rev 35:36–45
Guigoz Y, Doré J, Schiffrin EJ (2008) The inflammatory status of old age can be nurtured from the intestinal environment. Curr Opin Clin Nutr Metab Care 11(1):13–20
Hopkins M, Sharp R, Macfarlane G (2002) Variation in human intestinal microbiota with age. Dig Liver Dis 34 Suppl 2:S12–S18
Rondanelli M, Giacosa A, Faliva MA, Perna S, Allieri F, Castellazzi AM (2015) Review on microbiota and effectiveness of probiotics use in older. World J Clin Cases 3(2):156–162
Kato K, Odamaki T, Mitsuyama E, Sugahara H, J-z X, Osawa R (2017) Age-related changes in the composition of gut Bifidobacterium species. Cur Microbiol 74(8):987–995
O’Hagan C, Li JV, Marchesi JR, Plummer S, Garaiova I, Good MA (2017) Long-term multi-species Lactobacillus and Bifidobacterium dietary supplement enhances memory and changes regional brain metabolites in middle-aged rats. Neurobiol Learn Mem 144:36–47
Gao J, Xu K, Liu H, Liu G, Bai M, Peng C et al (2018) Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol 8:13. https://doi.org/10.3389/fcimb.2018.00013
Collino S, Montoliu I, Martin F-PJ, Scherer M, Mari D, Salvioli S et al (2013) Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS One 8(3):e56564. https://doi.org/10.1371/journal.pone.0056564
Mace J, Porter R, Dalrymple-Alford J, Wesnes K, Anderson T (2010) Effects of acute tryptophan depletion on neuropsychological and motor function in Parkinson’s disease. J Psychopharmacol 24(10):1465–1472
Roberts SB, Rosenberg I (2006) Nutrition and aging: changes in the regulation of energy metabolism with aging. Physiol Rev 86(2):651–667
Verdin E (2015) NAD+ in aging, metabolism, and neurodegeneration. Science 350(6265):1208–1213
Mendelsohn AR, Larrick JW (2017) The NAD+/PARP1/SIRT1 axis in aging. Rejuvenation Res 20(3):244–247
Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P et al (2016) NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352(6292):1436–1443
Igarashi M, Miura M, Williams E, Jaksch F, Kadowaki T, Yamauchi T et al (2019) NAD+ supplementation rejuvenates aged gut adult stem cells. Aging Cell 18:e12935. https://doi.org/10.1111/acel.12935
Nacarelli T, Lau L, Fukumoto T, Zundell J, Fatkhutdinov N, Wu S et al (2019) NAD+ metabolism governs the proinflammatory senescence-associated secretome. Nat Cell Biol 21(3):397–407
Balasubramanian P, Howell PR, Anderson RM (2017) Aging and caloric restriction research: a biological perspective with translational potential. EBioMedicine 21:37–44
Meidenbauer JJ, Ta N, Seyfried TN (2014) Influence of a ketogenic diet, fish-oil, and calorie restriction on plasma metabolites and lipids in C57BL/6J mice. Nutr Metab (Lond) 11:23. https://doi.org/10.1186/1743-7075-11-23
Roberts MN, Wallace MA, Tomilov AA, Zhou Z, Marcotte GR, Tran D et al (2017) A ketogenic diet extends longevity and healthspan in adult mice. Cell Metab 26(3):539–546.e5
Newman JC, Verdin E (2017) β-Hydroxybutyrate: a signaling metabolite. Annu Rev Nutr 37:51–76
Scheibye-Knudsen M, Mitchell SJ, Fang EF, Iyama T, Ward T, Wang J et al (2014) A high-fat diet and NAD+ activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab 20(5):840–855
Weber DD, Aminazdeh-Gohari S, Kofler B (2018) Ketogenic diet in cancer therapy. Aging (Albany NY) 10(2):164–165
Pyo J-O, Yoo S-M, Ahn H-H, Nah J, Hong S-H, Kam T-I et al (2013) Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun 4:2300. https://doi.org/10.1038/ncomms3300
Zhang C, Cuervo AM (2008) Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med 14(9):959–965
Jiao J, Demontis F (2017) Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Curr Opin Pharmacol 34:1–6
Acknowledgements
This work was financially supported by grants from the National Key R&D Program of China (2018YFC2000304 and 2018YFD0400204), National Natural Science Foundation of China (81871095), and the Key International S&T Cooperation Program of China (2016YFE113700).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Xu, K., Guo, Y., Li, Z., Wang, Z. (2019). Aging Biomarkers and Novel Targets for Anti-Aging Interventions. In: Guest, P. (eds) Reviews on Biomarker Studies in Aging and Anti-Aging Research. Advances in Experimental Medicine and Biology(), vol 1178. Springer, Cham. https://doi.org/10.1007/978-3-030-25650-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-25650-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-25649-4
Online ISBN: 978-3-030-25650-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)