Skip to main content

Capture on Grids and Tori with Different Numbers of Cops

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11657))

Included in the following conference series:

Abstract

This paper is a contribution to the classical cops and robber problem on a graph, directed to two-dimensional grids and tori. We apply some new concepts for solving the problem on grids and apply these concepts to give a new algorithm for the capture on tori. Then we consider using any number k of cops, give efficient algorithms for this case yielding a capture time \(t_k\), and compute the minimum value of k needed for any given capture time. We introduce the concept of work \(w_k=k\cdot t_k\) of an algorithm and study a possible speed-up using larger teams of cops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alspach, B.: Searching and sweeping graphs a brief survey. Le Matematiche 59(I), 5–37 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Bhattacharya, S., Paul, G., Sanyal, S.: A cops and robber game in multidimensional grids. Discrete Appl. Math. 158, 1745–1751 (2010)

    Article  MathSciNet  Google Scholar 

  3. Bhattacharya, S., Banerjee, A., Badyopadhay, S.: CORBA-based analysis of multi-agent behavior. J. Comput. Sci. Technol. 20(1), 118–124 (2005). https://doi.org/10.1007/s11390-005-0013-5

    Article  Google Scholar 

  4. Blin, L., Fraignaud, P., Nisse, N., Vial, S.: Distributed chasing of network intruders. Theoret. Comput. Sci. 399, 12–37 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bonato, A., Nowakovski, R.: The Game of Cops and Robbers on Graphs. American Mathematical Society, Rhode Island (2011)

    Book  Google Scholar 

  6. Cohen, N., Hilaire, M., Martins, N.A., Nisse, N., Perennes, S.: Spy-game on graphs: complexity and simple topologies. Theoret. Comput. Sci. 725, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  7. Dawes, R.: Some pursuit-evasion problems on grids. Inf. Process. Lett. 43, 241–247 (1992)

    Article  MathSciNet  Google Scholar 

  8. Dumitrescu, A., Kok, H., Suzuki, I., Żyliński, P.: Vision-based pursuit-evasion in a grid. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 53–64. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69903-3_7

    Chapter  Google Scholar 

  9. Ellis, J., Warren, R.: Lower bounds on the pathwidth of some grid-like graphs. Discrete Appl. Math. 156, 545–555 (2008)

    Article  MathSciNet  Google Scholar 

  10. Fomin, F., Golovach, P., Kratochvil, J., Nisse, N., Suchan, K.: Pursuing a fast robber on a graph. Theoret. Comput. Sci. 411, 1167–1181 (2010)

    Article  MathSciNet  Google Scholar 

  11. Goldstein, F., Reingold, E.: The complexity of pursuing a graph. Theoret. Comput. Sci. 143, 93–112 (1995)

    Article  MathSciNet  Google Scholar 

  12. Kinnersley, W.B.: Cops and Robbers is EXPTIME-complete. J. Comb. Theory, Series B 111, 201–220 (2015)

    Article  MathSciNet  Google Scholar 

  13. Luccio, F., Pagli, L.: Cops and robber on grids and tori. arXiv:1708.08255v2 (2019). https://arxiv.org/abs/1708.08255

  14. Maamoun, M., Meyniel, H.: On a game of policemen and robber. Discrete Appl. Math. 17, 18–44 (1988)

    MathSciNet  MATH  Google Scholar 

  15. Mehrabian, A.: The capture time of grids. Discrete Math. 311, 102–105 (2011)

    Article  MathSciNet  Google Scholar 

  16. Neufeld, S.: A pursuit-evasion problem on a grid. Inf. Proc. Let. 58, 5–9 (1996)

    Article  MathSciNet  Google Scholar 

  17. Neufeld, S., Nowakovsky, R.J.: A game on cops and robbers played on products of graphs. Discrete Math. 186, 253–268 (1998)

    Article  MathSciNet  Google Scholar 

  18. Nowakowski, R.J., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Math. 43, 253–259 (1983)

    MathSciNet  MATH  Google Scholar 

  19. Quillot, A.: These di \(3^{\circ }\) cycle. Universit de Paris VI, 131–145 (1978)

    Google Scholar 

  20. Sugihara, K., Suzuki, I.: Optimal algorithm for a pursuit-evasion problem. SIAM J. Discrete Math. 2, 126–143 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Luccio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luccio, F., Pagli, L. (2019). Capture on Grids and Tori with Different Numbers of Cops. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2019. Lecture Notes in Computer Science(), vol 11657. Springer, Cham. https://doi.org/10.1007/978-3-030-25636-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25636-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25635-7

  • Online ISBN: 978-3-030-25636-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics