Advertisement

Synchronous Multi-particle Cellular Automaton Model of Diffusion with Self-annihilation

  • Anastasiya KireevaEmail author
  • Karl K. Sabelfeld
  • Sergey Kireev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11657)

Abstract

In this paper a synchronous multi-particle cellular automaton model of diffusion with self-annihilation is developed based on the multi-particle cellular automata suggested previously by other authors. The models of pure diffusion and diffusion with self-annihilation are described and investigated. The correctness of the models is tested separately against the exact solutions of the diffusion equation for different 3D domains. The accuracy of the cellular automata simulation results is investigated depending on the number of cells per a single physical unit. The calculation time of cellular automaton simulation of diffusion with self-annihilation is compared with the calculation time of the Monte Carlo random walk on parallelepipeds method for different domain sizes. The parallel implementation of the cellular automaton model is developed and efficiency of the parallel code is analyzed.

Keywords

Multi-particle cellular automaton Synchronous mode Diffusion Self-annihilation Monte Carlo 

References

  1. 1.
    Smith, G.D.: Numerical Solution of Partial Differential Equations (Finite Difference Methods). Oxford University Press, Oxford (1990)Google Scholar
  2. 2.
    Courant, R., Friedrichsund, K., Lewy, H.: \(\ddot{\rm U}\)ber die partiellen Differentialgleichungen der mathematischen Physik. Math. Annalen 100, 32–74 (1928)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Sabelfeld, K.K.: Monte Carlo Methods in Boundary Value Problems. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  4. 4.
    Sabelfeld, K.K.: Random walk on spheres method for solving drift-diffusion problems. Monte Carlo Methods Appl. 22(4), 265–275 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Sabelfeld, K.K.: Random walk on spheres algorithm for solving transient drift-diffusion-reaction problems. Monte Carlo Methods Appl. 23(3), 189–212 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Sabelfeld, K.: Stochastic simulation methods for solving systems of isotropic and anisotropic drift-diffusion-reaction equations and applications in cathodoluminescence imaging. Submitted to Probabilistic Engineering Mechanics (2018)Google Scholar
  7. 7.
    Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling. MIT Press, USA (1987)zbMATHGoogle Scholar
  8. 8.
    Weimar, J.R.: Cellular automata for reaction-diffusion systems. Parallel Comput. 23, 1699–1715 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Weimar, J.R.: Three-dimensional cellular automata for reaction-diffusion systems. Fundamenta Informaticae 52(1–3), 277–284 (2002)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Weimar, J.R., Tyson, J.J., Watson, L.T.: Diffusion and wave propagation in cellular automaton models of excitable media. Physica D 55(3–4), 309–327 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chopard, B.: Cellular automata modeling of physical systems. In: Meyers, R. (ed.) Computational Complexity, pp. 407–433. Springer, New York (2012).  https://doi.org/10.1007/978-1-4614-1800-9_27CrossRefGoogle Scholar
  12. 12.
    Frenkel, D., Ernst, M.H.: Simulation of diffusion in a two-dimensional lattice-gas cellular automaton: a test of mode-coupling theory. Phys. Rev. Lett. 63(20), 2165–2168 (1989)CrossRefGoogle Scholar
  13. 13.
    Chopard, B., Droz, M.: Cellular automata model for the diffusion equation. J. Stat. Phys. 64(3–4), 859–892 (1991)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dab, D., Boon, J.-P.: Cellular automata approach to reaction-diffusion systems. In: Manneville, P., Boccara, N., Vichniac, G.Y., Bidaux, R. (eds.) Cellular Automata and Modeling of Complex Physical Systems, pp. 257–273. Springer, Heidelberg (1989).  https://doi.org/10.1007/978-3-642-75259-9_23CrossRefGoogle Scholar
  15. 15.
    Karapiperis, T., Blankleider, B.: Cellular automaton model of reaction-transport processes. Physica D 78, 30–64 (1994)CrossRefGoogle Scholar
  16. 16.
    Bandman, O.L.: Comparative study of cellular-automata diffusion models. In: Malyshkin, V. (ed.) PaCT 1999. LNCS, vol. 1662, pp. 395–409. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48387-X_41CrossRefGoogle Scholar
  17. 17.
    Bandman, O.: Cellular automata diffusion models for multicomputer implementation. Bull. Nov. Comp. Center Comp. Sci. 36, 21–31 (2014)zbMATHGoogle Scholar
  18. 18.
    Medvedev, Y.: Multi-particle Cellular-automata models for diffusion simulation. In: Hsu, C.-H., Malyshkin, V. (eds.) MTPP 2010. LNCS, vol. 6083, pp. 204–211. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14822-4_23CrossRefGoogle Scholar
  19. 19.
    Chopard, B., Frachebourg, L., Droz, M.: Multiparticle lattice gas automata for reaction diffusion systems. Int. J. Mod. Phys. C 05(01), 47–63 (1994)CrossRefGoogle Scholar
  20. 20.
    Medvedev, Yu.: Automata noise in diffusion cellular-automata models. Bull. Nov. Comp. Center Comp. Sci. 30, 43–52 (2010)Google Scholar
  21. 21.
    Bandman, O.: The concept of invariants in reaction-diffusion cellular-automata. Bull. Nov. Comp. Center Comp. Sci. 33, 23–34 (2012)zbMATHGoogle Scholar
  22. 22.
    Kortl\(\ddot{\rm u}\)ke, O.: A general cellular automaton model for surface reactions. J. Phys. A Math. Gen. 31(46), 9185–9197 (1998)Google Scholar
  23. 23.
    Mai, J., von Niessen, W.: Diffusion and reaction in multicomponent systems via cellular-automaton modeling: \(A+B_2\). J. Chem. Phys. 98(3), 2032–2037 (1993)CrossRefGoogle Scholar
  24. 24.
    Rice, J.A.: Mathematical Statistics and Data Analysis, 3rd edn. Thomson Brooks/Cole, USA (2006)Google Scholar
  25. 25.
    Sabelfeld, K.K., Kireeva, A.E.: A meshless random walk on parallelepipeds algorithm for solving transient anisotropic diffusion-recombination equations and applications to cathodoluminescence imaging. Submitted to Numerische Mathematik (2018)Google Scholar
  26. 26.
    MVS-10P cluster, JSCC RAS. http://www.jscc.ru. Accessed 22 May 2019

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Computational Mathematics and Mathematical GeophysicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations