Advertisement

A Web-Based Platform for Interactive Parameter Study of Large-Scale Lattice Gas Automata

  • Maxim GorodnichevEmail author
  • Yuri Medvedev
Conference paper
  • 293 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11657)

Abstract

A problem of development of user-friendly interfaces for high performance computing (HPC) applications is addressed. The HPC Community Cloud (HPC2C) service that provides a RESTful application programming interface for unified control of HPC jobs was used to develop a prototype of a web-based UI for cellular automata simulation package. The UI allows a user to easily run multiple simulations on remote HPC resources and, this way, study a parameter space of a cellular automaton. The interface was used to organize a series of numerical experiments resulting in reproduction of the Kármán vortex street.

Keywords

High performance computing HPC cloud User interfaces Application programming interfaces Cellular automata Lattice Gas Automata Turbulent flows Kármán vortex street 

References

  1. 1.
    Medvedev, Y.G.: Lattice gas Cellular Automata for a flow simulation and their parallel implementation. In: Tarkov, M.S. (ed.) Parallel Programming: Practical Aspects, Models and Current Limitations. Series: Mathematics Research Developments, pp. 143–158. NSP Inc., New York (2014)Google Scholar
  2. 2.
    Kármán, T.: Aerodynamics, pp. 67–73. First McGraw-Hill Paperback Edition (1963). ISBN 07-067602-xGoogle Scholar
  3. 3.
    Bandman, O.L.: Relationships between cellular automata model parameters and their physical counterparts. Bull. Nov. Comp. Center, Series Comput. Sci. (42), 1–14 (2018).  https://doi.org/10.31144/bncc.cs.2542-1972.2018.n42.p1-14
  4. 4.
    Vanag, V.K.: Study of spatially extended dynamical systems using probabilistic cellular automata. Phys. Usp. 42(5), 413–434 (1999).  https://doi.org/10.1070/PU1999v042n05ABEH000558CrossRefGoogle Scholar
  5. 5.
    Chopard, B.: Cellular automata modeling of physical systems. In: Meyers, R. (ed.) Computational Complexity, pp. 407–433. Springer, New York (2012).  https://doi.org/10.1007/978-1-4614-1800-9CrossRefGoogle Scholar
  6. 6.
    Toffoli, T.: Cellular automata as an alternative to (rather than approximation of) differential equations in modeling physics. PhysicaD 10, 117–127 (1984).  https://doi.org/10.1016/0167-2789(84)90254-9MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bandman, O.L.: A discrete stochastic model of water permeation through a porous substance: parallel implementation peculiarities. Numer. Anal. Appl. 11(1), 4–15 (2018).  https://doi.org/10.1134/S1995423918010020MathSciNetCrossRefGoogle Scholar
  8. 8.
    Medvedev, Y.: Cellular-automaton simulation of a cumulative jet formation. In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 249–256. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03275-2_25CrossRefGoogle Scholar
  9. 9.
    Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-Gas Automata for the Navier-Stokes Equation. Phys. Rev. Lett. 56(14), 1505–1508 (1984).  https://doi.org/10.1103/PhysRevLett.56.1505CrossRefGoogle Scholar
  10. 10.
    Goecks, J., et al.: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11(8), R86 (2010).  https://doi.org/10.1186/gb-2010-11-8-r86CrossRefGoogle Scholar
  11. 11.
    Stodden, V., Seiler, J., Ma, Z.: An empirical analysis of journal policy effectiveness for computational reproducibility. Proc. Nat. Acad. Sci. USA 115(11), 2584–2589 (2018).  https://doi.org/10.1073/pnas.1708290115CrossRefGoogle Scholar
  12. 12.
    Jiménez, R.C., Kuzak, M., Alhamdoosh, M., et al.: Four simple recommendations to encourage best practices in research software [version 1; peer review: 3 approved]. F1000Research 6, 876 (2017)  https://doi.org/10.12688/f1000research.11407.1CrossRefGoogle Scholar
  13. 13.
    Hucka, M., Graham, M.J.: Software search is not a science, even among scientists: a survey of how scientists and engineers find software. J. Syst. Softw. 141, 171–191 (2018).  https://doi.org/10.1016/j.jss.2018.03.047. ISSN 0164–1212CrossRefGoogle Scholar
  14. 14.
    Calegari, P., Levrier, M., Balczyński, P.: Web portals for high-performance computing: a survey. ACM Trans. Web 13(1), 5:1–5:36 (2019).  https://doi.org/10.1145/3197385CrossRefGoogle Scholar
  15. 15.
    Afanasiev, A., Sukhoroslov, O., Voloshinov, V.: MathCloud: publication and reuse of scientific applications as RESTful web services. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 394–408. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39958-9_36CrossRefGoogle Scholar
  16. 16.
    Gorodnichev, M., Vaycel, S.: Organization of access to supercomputing resources in the HPC community cloud. Bull. South Ural State Univ. Ser. Comput. Math. Softw. Eng. 3(4), 85–95 (2014).  https://doi.org/10.14529/cmse140406
  17. 17.
    Sukhoroslov, O., Volkov, S., Afanasiev, A.: A web-based platform for publication and distributed execution of computing applications. In: 14th International Symposium on Parallel and Distributed Computing, Limassol, pp. 175–184 (2015).  https://doi.org/10.1109/ISPDC.2015.27
  18. 18.
    Cholia, S., Sun, T.: The NEWT platform: an extensible plugin framework for creating ReSTful HPC APIs. Concurrency Computat. Pract. Exper. 27, 4304–4317 (2015).  https://doi.org/10.1002/cpe.3517CrossRefGoogle Scholar
  19. 19.
    OLeary, P., Christon, M., Jourdain, S., Harris, C., Berndt, M., Bauer, A.: HPCCloud: a cloud/web-based simulation environment. In: IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom), Vancouver, BC, pp. 25–33 (2015).  https://doi.org/10.1109/CloudCom.2015.33
  20. 20.
    Cao, R., Xiao, H., Lu, S., Zhao, Y., Wang, X., Chi, X.: SCEAPI: a unified restful web API for high-performance computing. J. Phys. Conf. Ser. 898(9), 092022 (2017).  https://doi.org/10.1088/1742-6596/898/9/092022CrossRefGoogle Scholar
  21. 21.
    Bychkov, I.V., Oparin, G.A., Bogdanova, V.G., Pashinin, A.A., Gorsky, S.A.: Automation development framework of scalable scientific web applications based on subject domain knowledge. In: Malyshkin, V. (ed.) PaCT 2017. LNCS, vol. 10421, pp. 278–288. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-62932-2_27CrossRefGoogle Scholar
  22. 22.
    Struckmann, N., et al.: MIKELANGELO: MIcro KErneL virtualizAtioN for hiGh pErfOrmance cLOud and HPC systems. In: Mann, Z.Á., Stolz, V. (eds.) ESOCC 2017. CCIS, vol. 824, pp. 175–180. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-79090-9_15CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Computational Mathematics and Mathematical Geophysics SB RASNovosibirskRussia
  2. 2.Institute of Computational Technologies SB RASNovosibirskRussia
  3. 3.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations