Advertisement

A Comparison of MPI/OpenMP and Coarray Fortran for Digital Rock Physics Application

  • Galina ReshetovaEmail author
  • Vladimir Cheverda
  • Tatyana Khachkova
Conference paper
  • 313 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11657)

Abstract

A new parallel numerical technique to estimate the effective elastic parameters of a rock core sample from the three-dimensional Computed Tomography images is presented. The method is based on the energy equivalence principle and a new approach to solving the 3D static elasticity problem by the iterative relaxation technique.

The method in the three-dimensional case requires the obligatory parallel implementation. The most commonly used strategy of parallelization is MPI and OpenMP. The latest Fortran extension offers the new Coarray Fortran (CAF) features, which can potentially compete with the MPI due to its efficiency and simple implementation. We compare three parallel approaches based on the MPI, MPI+OpenMP and CAF to solve the problem. Comparison of these methods has shown that the CAF brings about a sufficiently compact parallel code with a simple syntax, thus making the parallelism easier to understand. The results presented demonstrate that the CAF implementation provides comparable performance to an equivalent MPI version.

Keywords

Effective parameters Elastic moduli 3D Tomographic images Coarrays Fortran PGAS languages MPI 

Notes

Acknowledgements

The research has been carried out using the equipment of the shared research facilities of HPC computing resources at the Joint Supercomputer Center of RAS, the Siberian Supercomputer Center of SB RAS and the Irkutsk Supercomputer Center of SB RAS.

References

  1. 1.
    Aboudi, J.: Mechanics of Composite Materials: A Unified Micromechanical Approach. Elsevier Science, Amsterdam (1991)zbMATHGoogle Scholar
  2. 2.
    Belonosov, M.A., Kostov, C., Reshetova, G.V., Soloviev, S.A., Tcheverda, V.A.: Parallel numerical simulation of seismic waves propagation with intel math Kernel library. In: Manninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 153–167. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36803-5_11CrossRefGoogle Scholar
  3. 3.
    Chivers, I., Sleightholme, J.: Introduction to Programming with Fortran. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-17701-4CrossRefzbMATHGoogle Scholar
  4. 4.
    Christensen, R.: Introduction to Mechanics of Composite Materials, 1st edn. Wiley, New York (1979)Google Scholar
  5. 5.
    ISO/IEC 1539–1:2010, Fortran – Part 1: Base language, International Standard (2010)Google Scholar
  6. 6.
    Dupuy, B., Garambois, S., Virieux, J.: Estimation of rock physics properties from seismic attributes - Part 1: Strategy and sensitivity analysis. Geophysics 81(3), M35–M53 (2016)CrossRefGoogle Scholar
  7. 7.
    Dupuy, B., et al.: Estimation of rock physics properties from seismic attributes – Part 2: Applications. Geophysics 81(4), M55–M69 (2016)CrossRefGoogle Scholar
  8. 8.
    Kostin, V., Lisitsa, V., Reshetova, G., Tcheverda, V.: Parallel algorithm with modulus structure for simulation of seismic wave propagation in 3D multiscale multiphysics media. In: Malyshkin, V. (ed.) PaCT 2017. LNCS, vol. 10421, pp. 42–57. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-62932-2_4CrossRefGoogle Scholar
  9. 9.
    Kostin, V., Lisitsa, V., Reshetova, G., Tcheverda, V.: Simulation of seismic waves propagation in multiscale media: impact of cavernous/fractured reservoirs. In: Jónasson, K. (ed.) PARA 2010. LNCS, vol. 7133, pp. 54–64. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28151-8_6CrossRefGoogle Scholar
  10. 10.
    Landau, L.D., Lifshitz, E.M.: Mechanics. Nauka, Moscow (1988)zbMATHGoogle Scholar
  11. 11.
    Pevzner, R., et al.: Feasibility of time-lapse seismic methodology for monitoring the injection of small quantities of CO2 into a saline formation, CO2CRC Otway Project. Energy Procedia 37, 4336–4343 (2013)CrossRefGoogle Scholar
  12. 12.
    Reshetova, G., Khachkova, T.: Parallel numerical method to estimate the effective elastic moduli of rock core samples from 3D tomographic images. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) FDM 2018. LNCS, vol. 11386, pp. 452–460. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-11539-5_52CrossRefGoogle Scholar
  13. 13.
    Schoenberg, M., Muir, F.: A calculus for finely layered anisotropic media. Geophysics 54(5), 581–589 (1989)CrossRefGoogle Scholar
  14. 14.
    Sendetski, J. (ed.): Composition Materials, vol. 2. Mechanics of Composition Meterials [Russian translation]. Mir, Moscow (1978)Google Scholar
  15. 15.
    Shermergor, T.: The Theory of Elasticity of Microinhomogeneous Media [Russian translation]. Nauka, Moscow (1977)Google Scholar
  16. 16.
    Zhang, W., Dai, G., Wang, F., Sun, S., Bassir, H.: Using strain energy-based prediction of effective elastic properties in topology optimization of material microstructures. Acta. Mech. Sin. 23(1), 77–89 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Vishnevsky, D., Lisitsa, V., Tcheverda, V., Reshetova, G.: Numerical study of the interface errors of finite-difference simulations of seismic waves. Geophysics 79, T219–T232 (2014)CrossRefGoogle Scholar
  18. 18.
    Virieux, J.: P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51, 889–901 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Galina Reshetova
    • 1
    Email author
  • Vladimir Cheverda
    • 2
  • Tatyana Khachkova
    • 2
  1. 1.The Institute of Computational Mathematics and Mathematical Geophysics SB RASNovosibirskRussia
  2. 2.The Trofimuk Institute of Petroleum Geology and Geophysics SB RASNovosibirskRussia

Personalised recommendations